跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝明君
研究生(外文):Ming-June Hsieh
論文名稱:奈米零價鐵降解受TNT、RDX及HMX高能火炸藥污染水體之研究
論文名稱(外文):Decontamination of TNT, RDX, and HMX High-Eexplosive Wastewaters by Zero-Valent Iron Nanoparticles
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:151
中文關鍵詞:奈米零價鐵高能火炸藥TNTRDXHMX還原降解同步輻射光譜
外文關鍵詞:ero-valent iron nanoparticleHigh-explosivesTNTRDXHMXReductive degradationXANES/EXAFS.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:636
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
由於高能火炸藥(TNT、RDX及HMX)製程中任意排放於環境中廢水,常常造成土壤及地下水的污染,此污染物對人體具高毒性且難以從環境中移除,因此,環保且有效的處理受高能火炸藥污染的水體的技術,即成為現今研究之重要課題。本研究之主要目為利用化學還原法製備奈米零價鐵顆粒(nano-Fe(0)),處理受高能火炸藥污染的水體。研究內容可區分為兩部分,第一部份以高效能液相層析儀(HPLC)、液相層析串聯質譜儀(LC/MS/MS)及氣相層析質譜儀(GC/MS),探討受污染水體中高能火炸藥之降解效率、反應動力參數、熱力學模式及反應途徑;第二部份則使用場發掃描式電子顯微鏡(FE-SEM)、X光粉末繞射儀(XRPD)、化學分析電子光譜儀(ESCA)、穿透式電子顯微鏡(TEM)、BET比表面積測定儀(BET)及同步輻射(XANES/EXAFS)分析鑑定nano-Fe(0)反應前後結構特性及產物之差異性,進而深入瞭解nano-Fe(0)還原降解反應高能火炸藥(TNT、RDX及HMX)之機制及途徑。
本論文中合成之nano-Fe(0)實驗乃於氬氣下經燈罩法烘乾並惰化後XRD圖譜文獻資料相符。由FE-SEM分析其粒徑為20~50 nm,BET量測其比表面積為42.557 m2 g-1。降解研究中,以0.1 g之nano-Fe(0)降解3種高能火炸藥水溶液,實驗結果顯示在室溫下(25 ± 1℃)於1 h內可完全降解90 ppm之TNT、35 ppm之RDX及5 ppm之HMX。在動力學研究中,將nano-Fe(0)降解三種不同濃度高能火炸藥實驗結果代入簡化的Langmuir-Hinshelwood動力學模式ln(C0/Ca) = kt計算得到R Square > 0.995,其降解反應為一階反應。在熱力學模式研究中,則是以三種不同的高能火炸藥於25及35℃的溫度下進行實驗,並以Arrhenius equation計算其活化能,得到TNT、RDX及HMX的活化能分別為9.743、10.079及12.460 kcal mol-1。在反應途徑研究中,由LC/MS/MS及GC/MS分析結果顯示高能火炸藥反應反應途徑是第一步為NO2官能基團被還原取代成NO官能基團,第二步為NO官能基團被還原取代成NH2官能基團後,導致結構不穩定而水解開環。
分析nano-Fe(0)與高能火炸藥反應前中後之產物,由FE-SEM及TEM分析發現有nano-Fe(0)顆粒數量減少及片狀產物的增加的趨勢,再以ESCA分析顯示其表面具有Fe、FeO、Fe3O4、及Fe2O3等四種不同的氧化物,且其反應趨勢為Fe(0) → FeO → Fe3O4 → Fe2O3。
nano-Fe(0)與高能火炸藥反應後最終產物,以X光吸收近邊緣結構(XANES)分析結果顯示,其反曲點最接近Fe3O4,且藉由延伸X光吸收細微結構(EXAFS)分析其中心Fe原子配位數接近4,表示結構可能是八面體中平面四邊形結構;Fe-O的鍵距約為1.94 ± 0.01 Å,再以XRPD分析晶形結構,其圖譜結果發現相似Fe3O4及Fe2O3。
Currently, soil and groundwater were polluted by explosives-contaminated wastewaters discharged from military factory worldwide. These high-explosives are toxic to human beings and very difficult to be removed from the environment. Therefore, a highly efficient and clean method was developed utilizing zero-valent iron nanoparticles to reduce the explosives-contaminated wastewaters. In this research, HPLC, LC/MS/MS, and GC/MS were used to determine the efficiency of degradation, kinetic model, thermal model, activation energy, and reaction pathways. Moreover, the properties of zero-valent iron nanoparticles after degradation were also analyzed by FE-SEM, TEM, XRPD, ESCA, BET, and XANES/EXAFS techniques.
In this study, zero-valent iron nanoparticles with a diameter of 20-50 nm and specific surface area of 42.557 m2?eg-1 were measured by FE-SEM and BET. Zero-valent iron nanoparticles had a strong characteristic peak at 2θ = 44.6o were investigated by XRPD patterns. In the degrading experiments, 90 ppm TNT, 35 ppm RDX and 5 ppm HMX at room temperature (25 ± 1℃) were degraded completely with 0.1 g zero-valent iron nanoparticles in 1 h. The experimental results were placed into a simple Langmuir-Hinshelwood equation (ln(C0/Ca) = kt) and the R-squares were all upon 0.995. However, the degradation statistics corresponded to the pseudo first order kinetics. The thermodynamics study was carried on three different high-explosives under 25-35℃ and the activation energies of TNT, RDX, and HMX were calculated to 9.743, 10.079, and 12.460 kcal?emol-1 by Arrhenius equation, respectively.
In the investigation of degradation pathway, the intermediates were identified by LC/MS/MS, and GC/MS. The substitution of high-explosives was reduced by different quantities of nitroso group into hydroxylamine. The ring structure of the explosives became destabilized when nitroso group was further reduced to a hydroxylamine group resulting into ring cleavage by a hydrolysis route eventually.
In reductive degradation processing, the zero-valent iron nanoparticles were reduced and also sheet-type materials were produced. Meanwhile, the surface of Fe, FeO, Fe3O4, and Fe2O3 was measured by ESCA and the crystalline structures were similar with Fe3O4 and Fe2O3 identified by XRPD patterns. In addition, the valence of zero-valent iron nanoparticles after degradation was 8/3 as shown by XANES technique. The coordination numbers of Fe atom were close to 4 and the bound distance of Fe-O was about 1.94 ± 0.01 Å as determined by EXAFS spectra.
目 錄
頁次
摘要 I
ABSTRACT III
誌謝 I
圖目錄 I
第一章 前言 1
1.1 緣起 1
1.2 動機 1
1.3 目的 2
第二章 文獻回顧 4
2.1 火炸藥物理化學性質 4
2.1.1 TNT物理化學性質 4
2.1.2 RDX物理化學性質 9
2.1.3 HMX物理化學性質 12
2.2 高能火炸藥的毒理測試特性 15
2.2.1 TNT的毒理測試特性 17
2.2.2 RDX的毒理測試特性 18
2.3.3 HMX的毒理測試特性 19
2.3 火炸藥的環境污染 20
2.3.1 火炸藥工業的污染 20
2.3.2 火炸藥的管制標準 21
2.4 零價金屬處理技術 23
2.5 奈米零價鐵製備 25
2.5.1 常用奈米粒子製備法 25
2.5.2 奈米零價鐵製備 26
第三章 實驗方法與分析 29
3.1 實驗藥品 29
3.2 實驗器材 31
3.3 實驗步驟 32
3.3.1 奈米零價鐵合成 32
3.3.2 奈米零價鐵烘乾與惰化保存 33
3.3.3 奈米零價鐵降解火炸藥實驗 34
3.4 分析方法 35
3.4.1 穿透式電子顯微鏡 35
3.4.2 場發掃描式電子顯微鏡 37
3.4.3 X光粉末繞射儀 39
3.4.4 比表面積 41
3.4.5 同步輻射吸收光譜 44
3.4.5.1 同步輻射光吸收實驗 44
3.4.5.2 實驗方法與步驟 46
3.4.5.3 實驗數據分析 47
3.4.6 粒徑分析 49
3.4.7 高效能液相層析儀 52
3.4.8 氣相層析質譜儀 54
3.4.9 串聯式液相層析質譜儀 56
第四章 結果與討論 58
4.1 奈米零價鐵粉合成及性質分析 58
4.1.1 奈米零價鐵粉之合成 58
4.2 高能火炸藥降解實驗 60
4.3 奈米零價鐵降解高能火炸藥降解動力及熱力學 63
4.3.1 降解動力學 63
4.3.2 奈米零價鐵降解高能火炸藥熱力學分析 68
4.3.3 高能火炸藥結構與降解效率 72
4.4 高能火炸藥降解途徑探討 77
4.4.1 高能火炸藥TNT降解途徑探討 78
4.4.2 高能火炸藥RDX降解途徑探討 86
4.4.3 高能火炸藥HMX降解途徑探討 93
4.5 高能火炸藥降解XRPD分析 103
4.6 奈米零價鐵降解高能火炸藥TEM及FE-SEM/EDX分析 106
4.7 奈米零價鐵降解高能火炸藥XPS/ESCA元素分析 118
4.8奈米零價鐵粉降解高能火炸藥後XANES分析 123
4.9 奈米零價鐵粉降解高能火炸藥後EXAFS分析 126
第五章 結論及未來研究方向 132
5.1 結論 132
5.2 未來研究方向 135
參考文獻 136

圖 目 錄
頁次
圖1.1.1 奈米零價鐵粉降解受TNT、RDX及HMX高能火炸藥污染水體之研究流程及步驟 3
圖2.1.1 TNT化學結構 4
圖2.1.2 RDX的化學結構 10
圖2.1.3 HMX今的化學結構 12
圖2.5.1 奈米零價鐵粉氬氣烘乾示意圖 27
圖2.5.2 奈米零價鐵粉保存於絕氧手套箱 28
圖3.3.1 合成奈米零價鐵之實驗流程 32
圖3.3.2 奈米零價鐵烘乾與惰化保存實驗流程 33
圖3.3.3 以奈米零價鐵粉降解火炸藥實驗流程 34
圖3.4.1 電子與物質作用所產生的訊號 35
圖3.4.2 穿透式電子顯微鏡儀器裝置 36
圖3.4.3 場發掃描式電子顯微鏡主要構造 37
圖3.4.4 場發掃描式電子顯微鏡儀器裝置 38
圖3.4.5 X光粉末繞射儀之基本原理 39
圖3.4.6 X光粉末繞射儀儀器裝置 40
圖3.4.7 BET表面積測定儀器裝置 43
圖3.4.8 同步輻射光源 44
圖3.4.9 同步輻射光吸收實驗操作流程 46
圖3.4.10 N4Plus分析的示意流程 51
圖3.4.11 粒徑分析儀器裝置 51
圖3.4.12 高效能液相層析儀 53
圖3.4.13 氣相層析質譜儀 55
圖3.4.14 串聯式液相層析質譜儀 56
圖3.4.15 LC/MS/MS操作流程 57
圖4.1.1 奈米零價鐵粉粒徑分析 59
圖4.2.1 以0.1 g奈米零價鐵粉降解不同濃度TNT曲線 61
圖4.2.2 以0.1 g奈米零價鐵粉降解不同濃度RDX曲線 61
圖4.2.3 以0.1 g奈米零價鐵粉降解不同濃度HMX曲線 62
圖4.3.1 以奈米零價鐵粉降解不同濃度TNT轉換率 66
圖4.3.2 以奈米零價鐵粉降解不同濃度RDX轉換率 67
圖4.3.3 以奈米零價鐵粉降解不同濃度HMX轉換率 67
圖4.3.4 奈米零價鐵降解90 ppm的TNT熱力學分析 70
圖4.3.5 奈米零價鐵降解35 ppm的RDX熱力學分析 71
圖4.3.6 奈米零價鐵降解5 ppm的HMX熱力學分析 71
圖4.3.7 TNT、RDX及HMX化學結構 73
圖4.3.8 TNT的立體結構示意 74
圖4.3.9 RDX的椅型立體結構示意 74
圖4.3.10 HMX的皇冠狀立體結構示意 75
圖4.3.11 TNT立體結構中C-C-C環鍵角 75
圖4.3.12 RDX立體結構中C-N-C環鍵角 76
圖4.3.13 HMX立體結構中C-N-C環鍵角 76
圖4.4.1 奈米零價鐵降解TNT 5 min後樣品中NO取代數(a)單取代(分子量210)、(b)雙取代(分子量194) 及(c)三取代(分子量178) 81
圖4.4.2 奈米零價鐵降解TNT 5 min後樣品中NH2取代數(a)單取代(分子量196)、(b)雙取代(分子量166) 及(c)三取代(分子量136) 81
圖4.4.3 奈米零價鐵降解TNT 10 min後樣品中NO取代數(a)單取代(分子量210)、(b)雙取代(分子量194) 及(c)三取代(分子量178) 82
圖4.4.4 奈米零價鐵降解TNT 10 min後樣品中NH2取代數(a)單取代(分子量196)、(b)雙取代(分子量166)及(c)三取代(分子量136) 82
圖4.4.5 奈米零價鐵降解TNT 60 min後樣品中NO取代數(a)單取代(分子量210)、(b)雙取代(分子量194)及(c)三取代(分子量178) 83
圖4.4.6 奈米零價鐵降解TNT 60 min後樣品中NH2取代數(a)單取代(分子量196)、(b)雙取代(分子量166)及(c)三取代(分子量136) 83
圖4.4.7 奈米零價鐵降解TNT 60 min後樣品中GC/MS分析(a)長鏈烷類及(b) CH3NH2 84
圖4.4.8 奈米零價鐵降解TNT脫硝(a)可能機制及(b)可能反應路徑 85
圖4.4.9 奈米零價鐵降解RDX 10 min後樣品中NO取代數(a)單取代(分子量241)、(b)雙取代(分子量225) 及(c)三取代(分子量209) 89
圖4.4.10 奈米零價鐵降解RDX 10 min後樣品中NH2取代數(a)單取代(分子量227)、(b)雙取代(分子量197)及(c)三取代(分子量167) 89
圖4.4.11 奈米零價鐵降解RDX 30 min後樣品中NO取代數 (a)單取代(分子量241)、(b)雙取代(分子量225)及(c)三取代(分子量209) 90
圖4.4.12 奈米零價鐵降解RDX 10 min後樣品中NH2取代數(a)單取代(分子量227)、(b)雙取代(分子量197)及(c)三取代(分子量167) 90
圖4.4.13 奈米零價鐵降解RDX 60 min後樣品中NO取代數(a)單取代(分子量241)、(b)雙取代(分子量225)及(c)三取代(分子量209) 91
圖4.4.14 奈米零價鐵降解RDX 60 min後樣品中NH2取代數(a)單取代(分子量227)、(b)雙取代(分子量197)及(c)三取代(分子量167) 91
圖4.4.15 奈米零價鐵降解RDX脫硝(a)可能機制及(b)可能反應路徑 92
圖4.4.16 奈米零價鐵降解HMX 10 min後樣品中NO取代數(a)單取代(分子量315)、(b)雙取代(分子量299)、(c)三取代(分子量288)及(d)四取代(分子量267) 96
圖4.4.17 奈米零價鐵降解HMX 10 min後樣品中NH2取代數(a)單取代(分子量301)、(b)雙取代(分子量271)、(c)三取代(分子量241)及(d)四取代(分子量211) 97
圖4.4.18 奈米零價鐵降解HMX 30 min後樣品中NO取代數(a)單取代(分子量315)、(b)雙取代(分子量299)、(c)三取代(分子量288)及(d)四取代(分子量267) 98
圖4.4.19 奈米零價鐵降解HMX 30 min後樣品中NH2取代數(a)單取代(分子量301)、(b)雙取代(分子量271)、(c)三取代(分子量241)及(d)四取代(分子量211) 99
圖4.4.20 奈米零價鐵降解HMX 60 min後樣品中NO取代數(a)單取代(分子量315)、(b)雙取代(分子量299)、(c)三取代(分子量288)及(d)四取代(分子量267) 100
圖4.4.21 奈米零價鐵降解HMX 60 min後樣品中NH2取代數(a)單取代(分子量301)、(b)雙取代(分子量271)、(c)三取代(分子量241)及(d)四取代(分子量211) 101
圖4.4.22 奈米零價鐵降解HMX脫硝(a)可能機制及(b)可能反應路徑 102
圖4.5.1 (a) Fe(0)標準品及(b)自行合成Fe(0)之XRPD分析 103
圖4.5.2 Fe(0)降解HMX所得粉末之XRPD分析 (a) Fe(0)標準品、(b) FeO標準品、(c) Fe2O3標準品、(d) Fe3O4標準品及(e) Fe(0)與TNT降解所得粉末 104
圖4.5.3 Fe(0)降解HMX所得粉末之XRPD分析 (a) Fe(0)標準品、(b) FeO標準品、(c) Fe2O3標準品、(d) Fe3O4標準品及(e) Fe(0)與RDX降解所得粉末 104
圖4.5.4 Fe(0)降解HMX所得粉末之XRPD分析 (a) Fe(0)標準品、(b) FeO標準品、(c) Fe2O3標準品、(d) Fe3O4標準品及(e) Fe(0)與HMX降解所得粉末 105
圖4.6.1 奈米零價鐵25 k倍FE-SEM分析 109
圖4.6.2 奈米零價鐵50 k倍FE-SEM分析 109
圖4.6.3 奈米零價鐵100 k倍FE-SEM分析 110
圖4.6.4 奈米零價鐵之EDX分析 110
圖4.6.5 奈米零價鐵降解TNT 60 min後產物25 k倍FE-SEM分析 111
圖4.6.6 奈米零價鐵降解TNT 60 min後產物50 k倍FE-SEM分析 111
圖4.6.7 奈米零價鐵降解TNT 60 min後產物100 k倍FE-SEM分析 112
圖4.6.8 奈米零價鐵降解TNT 60 min後產物EDX分析 112
圖4.6.9 奈米零價鐵降解RDX 10 min後產物25 k倍FE-SEM分析 113
圖4.6.10 奈米零價鐵降解RDX 10 min後產物50 k倍FE-SEM分析 113
圖4.6.11 奈米零價鐵降解RDX 10 min後產物100 k倍FE-SEM分析 114
圖4.6.12 奈米零價鐵降解RDX 10 min後產物EDX分析 114
圖4.6.13 奈米零價鐵降解HMX 60 min後產物25 k倍FE-SEM分析 115
圖4.6.14 奈米零價鐵降解HMX 60 min後產物 50 k倍FE-SEM分析 115
圖4.6.15 奈米零價鐵降解HMX 60 min後產物100 k倍FE-SEM分析 116
圖4.6.16 奈米零價鐵降解HMX 60 min後產物EDX分析 116
圖4.6.17 奈米零價鐵對高能火炸藥反應後TEM分析 117
圖4.7.1 奈米零價鐵降解高能火炸藥後XPS/ESCA分析 120
圖4.7.2 奈米零價鐵降解高能火炸藥5 min後XPS/ESCA Fe微區分析 121
圖4.7.3 奈米零價鐵降解高能火炸藥10 min後XPS/ESCA Fe微區分析 121
圖4.7.4 奈米零價鐵降解高能火炸藥60 min後XPS/ESCA Fe微區分析 122
圖4.8.1 (a)標準Fe(0)、FeO、Fe3O4、Fe2O3的之Fe XANES及(b)pre-edge分析 124
圖4.8.2 降解TNT後奈米零價鐵之Fe (a)XANES及(b)pre-edge分析 124
圖4.9.1 奈米零價鐵粉降解TNT後Fe之傅立葉轉換(Fourier transform)光譜(圓圈表示EXAFS光譜與Fe2O3最佳擬合曲線) 129
圖4.9.2 奈米零價鐵粉降解TNT後Fe之傅立葉轉換(Fourier transform)光譜(圓圈表示EXAFS光譜與Fe3O4最佳擬合曲線) 129
圖4.9.3 奈米零價鐵粉降解RDX後Fe之傅立葉轉換(Fourier transform)光譜(圓圈表示EXAFS光譜與Fe2O3最佳擬合曲線) 130
圖4.9.4 奈米零價鐵粉降解RDX後Fe之傅立葉轉換(Fourier transform)光譜(圓圈表示EXAFS光譜與Fe3O4最佳擬合曲線) 130
圖4.9.5 奈米零價鐵粉降解HMX後Fe之傅立葉轉換(Fourier transform)光譜(圓圈表示EXAFS光譜與Fe2O3最佳擬合曲線) 131
圖4.9.6 奈米零價鐵粉降解HMX後Fe之傅立葉轉換(Fourier transform)光譜(圓圈表示EXAFS光譜與Fe3O4最佳擬合曲線) 131

表 目 錄
頁次
表2.1.1 TNT的物理及化學資料 5
表2.1.2 TNT製程及污染處理專利 6
表2.1.3 RDX的物理及化學資料 10
表2.1.4 RDX製程及污染處理專利 11
表2.1.5 HMX製程及污染處理專利 13
表2.2.1 毒物的毒性分類 16
表2.3.1 軍事用相關火炸藥的水質標準 22
表2.5.1 常見奈米材料製法 25
表3.1.1 實驗藥品名稱、化學式及其相關資料 29
表3.2.1 實驗器材名稱、廠商及其型號 31
表4.1.1 奈米零價鐵粉及市售鐵粉粒子大小及比表面積比較 59
表4.3.1 奈米零價鐵還原90、80及70 ppm之TNT R2及KSA值 65
表4.3.2 奈米零價鐵還原35、25及15 ppm之RDX R2及KSA值 65
表4.3.3 奈米零價鐵還原5、4及3 ppm之 HMX的R2及KSA值 66
表4.4.1 奈米零價鐵降解TNT可能中間產物結構 80
表4.4.2 奈米零價鐵降解RDX可能中間產物結構 88
表4.4.3 奈米零價鐵降解HMX可能中間產物結構 95
表4.7.1 高能火炸藥pH值 119
表4.9.1 奈米零價鐵降解高能火炸藥EXAFS分析 128
1.Crockett A. B., Craig H. D., and Jenkins T. F., Field sampling and selecting on-site analytical methods for explosives in water, Field Facilities Forum Issue, EPA/600/S-99/002, 2, USEPA., (1999).
2.Rittmann B. E., Natural attenuation for groundwater remediation, A report of the National research Council, 5-8 (2000).
3.Alnaizy R., and Akgerman A., Oxidative treatment of high explosives contaminated wastewater, Wat. Res., 33(9), 2021-2030 (1999).
4.Pennington J. C., and Brannon J. M., Environmental fate of explosives, Thermochimica Acta, 384(1-2), 163-172 (2002).
5.Singh J., Comfort S. D. and Shea P. J., Iron-mediated remediation of RDX-contaminated waster and soil under controlled Eh/pH, Environ. Sci. Technol., 33(9), 1488-1494 (1999).
6.孫榮康、翟美林、陸才正,「火炸藥工業的污染及其防治」,38-138(TNT);139-207 (RDX及HMX),兵器工業出版社(1990)。
7.鍾一鵬、胡雅選、江宏志,「國外炸藥性能手冊」,4-7 (TNT);75-78 (RDX);79-81 (HMX),兵器工業出版社(1990)。
8.黃振家,「TNT製程減廢及其廢水焚燒效率提昇研究」,聯勤203廠與中正理工學院學術合作研究計畫,6-10,中正理工學院應化系(1977)。
9.Mishra D., and Farrell J., Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy, Environ. Sci. Technol., 39(2), 645-650 (2005).
10.Su C., and Puls R. W., Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate, Environ. Sci. Technol., 38(9), 2715-2720 (2004).
11.Dave G., Nilsson E., and Wernersson A. S., Sediment and water phase toxicity and UV-activation of six chemicals used in military explosives, Aquatic Ecosystem Health Manage., 3(3), 291-299 (2000).
12.Doll, Daniel W., Hanks, Jami M., Allred, Alan G., Niles, and John B., Reduced sensitivity, melt-pourable TNT replacements, U.S. Patent, 7,067,024 (2006).
13.Davis, and Matthew C., Trinitrotoluene (TNT) and environmentally friendly methods for making the same, U.S. Patent, 6,881,871 (2005).
14.Arcuri, Kym B., Goetsch, Duane A., Smith, Ryan M., Schmit, Steven J., Miller, and Paul L., Reclaiming RDX and TNT from composition B and composition B containing military shells, U.S. Patent, 6,777,586 (2004).
15.Taylor, William J., Goetsch, and Duane A., Reclaiming TNT and aluminum from tritonal and tritonal-containing munitions, U.S. Patent, 6,476,286 (2002).
16.Tobinick, and Edward L., TNT inhibitors for the treatment of neurological disorders, U.S. Patent, 6,177,077 (2001).
17.Hater, Gary R., Jerger, Douglas E., Green, Roger B., Barnes, Paul W., Woodhull, and Patrick M., Treatment of TNT-contaminated soil, U.S. Patent, 6,066,772 (2000).
18.Voigt, Jr., and William H., Simplified emulsion coating of crystalline explosives in a TNT melt, U.S. Patent, 5,358,587 (1994).
19.Stanton, and Horace D., Reed, Jr., Russell, Polymer modified TNT containing explosives, U.S. Patent, 4,445,948 (1984).
20.Portnoy, and Seymour, Production of fine-grained cast charges with unoriented crystal structure of TNT or explosive compositions containing TNT, U.S. Patent, 4,360,394 (1982).
21.Roane, and Asa E., TNT State sensor, U.S. Patent, 4,329,131 (1982).
22.Voigt, Jr., William H., Banker, and Bernard R., Preparation of TNT-thermoplastic polymer granules readily soluble in a TNT melt, U.S. Patent, 4,325,759 (1982).
23.Hendrickx, and Andreas J. J., Desensitized TNT, its preparation and use, U.S. Patent, 4,300,001 (1981).
24.Voigt, Jr., and William H., Castable TNT compositions containing a broad spectrum preformed thermoplastic polyurethane elastomer additive, U.S. Patent, 4,284,442 (1981).
25.Ribaudo, Charles, Leccacorvi, John F., Gilbert, and Everett E., Process for recovering TNT isomers, U.S. Patent, 4,258,224 (1981).
26.Lundstrom, Norman H., Reed, Jr., and Russell, Impermeable polymer bomb liner for use with TNT containing explosives, U.S. Patent, 4,152,987 (1979).
27.Heller, and Carl A., Analytical method for TNT in water, U.S. Patent, 4,108,604 (1978).
28.Voigt, Jr., William H., Pell, Lawrence W., Picard, and Jean P., Cast TNT explosive containing polyurethane elastomer which is free from oily exudation and voids and uniformly remeltable, U.S. Patent, 4,012,245 (1977).
29.Gilligan, William H., Hall, and Thomas N., Removal of tetranitromethane from TNT plant waste gases, U.S. Patent, 4,003,977 (1977).
30.Gilbert, and Everett E., Purification of TNT with magnesium sulfite-bisulfite mixtures, U.S. Patent, 4,003,953 (1977).
31.Hall, Thomas N., Gilligan, and William H., Removal of tetranitromethane from TNT plant waste, U.S. Patent, 4,001,373 (1977).
32.Voigt, Jr., and William H., Process for suspending particulate additives in molten TNT, U.S. Patent, 4,000,021 (1976)
33.Gilbert, and Everett E., Process for purifying TNT, U.S. Patent, 3,956,409 (1976).
34.孫榮康、瞿美林、陸才正,「火炸藥工業的污染及其防治」,94-97,兵器工業出版社(1990)。
35.Bier E. L., Singh J., Li Z.M., Comfort S.D., and Shea P. J., Remediating Hexahydro-1,3,5-trinitro-1,2,5-trazine-contamenated Water and Soil by Fenton Oxidation, Environ. Toxicol. Chem., 18(6), 1078-1084 (1999).
36.孫榮康、瞿美林、陸才正,「火炸藥工業的污染及其防治」,139-164,兵器工業出版社(1990)。
37.Arcuri, Kym B., Goetsch, Duane A., Smith, Ryan M., Schmit, Steven J., Miller, and Paul L., Reclaiming RDX and TNT from composition B and composition B containing military shells, U.S. Patent, 6,777,586 (2004).
38.Moser, Guy P., Gray, and Neil C. C., Compost decontamination of soil contaminated with TNT, HMX and RDX with aerobic and anaerobic microorganisms, U.S. Patent, 5,998,199 (1998).
39.Gallagher, Paula M., Krukonis, Val J., Coffey, and Michael P., Gas anti-solvent recrystallization and application for the separation and subsequent processing of RDX and HMX, U.S. Patent, 5,389,263 (1995).
40.Lukasavage, William J., Nicolich, Steven, Slagg, and Norman, Process for preparation of RDX, U.S. Patent, 5,250,687 (1993).
41.Lewicki, and Jerry W., Separation of RDX and HMX, U.S. Patent, 4,767,854 (1988).
42.Svensson, Leif, Nyqvist, Jan-Olof, Westling, and Lars, Crystallization method for HMX and RDX, U.S. Patent, 4,638,065 (1987).
43.Cattran, Doris E., Stanford, Thomas B., Graffeo, and Anthony P., Quantification of the munitions, HMX, RDX, and TNT in waste water by liquid chromatography, U.S. Patent, 4,252,537 (1981).
44.Brumley, Charles D., Staples, and John M., Recycle of spent acid in nitrolysis of hexamine to RDX, U.S. Patent, 4,163,845 (1979).
45.Lavertu, Roger R., Godbout, and Antonin, Process for spheroidization of RDX crystals, U.S. Patent, 4,065,529 (1977).
46.Wells, and Franklin B., Flexible explosive composition comprising particulate RDX, HMX, or PETN and a high viscosity introcellulose binder plasticized with TEGDN, U.S. Patent, 4,014,720 (1977).
47.Sarreal, and Philip M., Lettuce named HMX 7555, U.S. Patent, 6,555,735 (2003).
48.Lukasavage, William J., Behrmann, Lawrence A., Voreck, and Wallace E., Process for making an HMX product, U.S. Patent, 6,214,988 (2001).
49.Lukasavage, and William J., HMX compositions and processes for their preparation, U.S. Patent, 6,194,571 (2001).
50.Moser, Guy P., Gray, and Neil C. C., Compost decontamination of soil contaminated with TNT, HMX and RDX with aerobic and anaerobic microorganisms, U.S. Patent, 5,998,199 (1999).
51.Gallagher, Paula M., Krukonis, Val J., Coffey, and Michael P., Gas anti-solvent recrystallization and application for the separation and subsequent processing of RDX and HMX, U.S. Patent, 5,389,263 (1995).
52.Lukasavage, William, Nicolich, Steven, Alster, and Jack, Process of making impact insensitive Alpha-HMX, U.S. Patent, 5,268,469 (1993).
53.Levinthal, and Michael L., Recovery of nitric acid and sulfuric acids in production of beta HMX, U.S. Patent, 4,925,936 (1990).
54.Heinemeyer, Klaus, Redecker, Klaus, Sassmannshausen, and Ulrich, Process for producing fine-grained .beta.-HMX, U.S. Patent, 4,794,180 (1988).
55.Levinthal, and Michael L., Crystallization of beta HMX, U.S. Patent, 4,785,094 (1988).
56.Lewicki, and Jerry W., Separation of RDX and HMX, U.S. Patent, 4,767,854 (1988).
57.Svensson, Leif, Nyqvist, Jan-Olof, Westling, and Lars, Crystallization method for HMX and RDX, U.S. Patent, 4,638,065 (1987).
58.McGuire, Raymond R., Coon, Clifford L., Harrar, Jackson E., Pearson, and Richard K., Method for synthesizing HMX, U.S. Patent, 4,432,902 (1984).
59.Kincaid, John F., Reed, Jr., and Russell, Bonding agent for HMX (cyclotetramethylenetetranitramine), U.S. Patent, 4,350,542 (1982).
60.Reed, Jr., and Russell, Modification of ballistic properties of HMX by spray drying, U.S. Patent, 4,092,383 (1978).
61.Hoffman, Richard E., Lindsay, and Edward K., Polymeric-coated HMX crystals for use with propellant materials, U.S. Patent, 4,043,850 (1977).
62.Wells, and Franklin B., Flexible explosive composition comprising particulate RDX, HMX, or PETN and a high viscosity introcellulose binder plasticized with TEGDN, U.S. Patent, 4,014,720 (1977).
63.Wells, and Franklin B., Explosive composition comprising HMX, RDX, or PETN and a high viscosity nitrocellulose binder plasticized with TMETN, U.S. Patent, 3,943,017 (1976).
64.International Standard ISO, Water quality-determination of the inhibition of the mobility of Daphnia magma Straus (Cladocera, Crustacea)-acute toxicity test (1996).
65.Dave G., Bjornestad E., and Sundqvist M., Reproduction of Daphnia magna (clone 5) (Cladocera) in three media with three diets, Crustaceana, 61(3), 294-300 (1991).
66.Talmage S. S., Opresko D. M., Maxwell C. J., Welsh C. J. E., Cretella F. M., Hovatter P. S., and Daniel F. B., Reviews Environ. Contam. Toxicol., 161(9), 1-157 (1999).
67.Robidoux P. Y., Hawari J., Thiboutot S., Ampleman G., and Sunahara G. I., Acute Toxicity of. 2,4,6-Trinitrotoluene in Earthworm (Eisenia. andrei), Ecotoxicol. Ecotox. Environ. Safe., 44(3), 311-321 (1999).
68.Robidoux P. Y., Hawari J., Thiboutot S., Ampleman G.,and Sunhara G. I., Chronic toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in soil determined using the earthworm (Eisenia andrei) reproduction test, Environ. Pollut., 111(2), 283-292 (2001).
69.Robidoux P. Y., Sevendsen C., Caumartin J., Hawari J., Ampleman G., Thiboutot S., Weeks J.M., and Sunahara G.I., Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test, Environ. Toxicol. Chem., 19(7), 1764-1773 (2000).
70.Renoux A. Y., Sarrazin M., Hawari J., and Sunhara G. I., Transformation of 2,4,6-Trinitrotoluene in soil in the presence of the earthworm Eisenia andrei, Environ. Toxicol. Chem., 19(6), 1473-1480 (2000).
71.Fuller M. E., and Manning J., Evidence for differential effects of 2,4,6-trinitroluene and other munitions compounds on specific subpopulation of soil microbial communities, Environ. Toxicol. Chem., 17(11), 2185-2195 (1998).
72.Johnson M. S., Franke L. S., Lee R. B., and Holladay S. D., Bioaccumulation of 2,4,6-trinitrotoluene and polychlorinated biphenyls through two routes of exposure in a terrestrial amphibian: Is the dermal route significant?, Environ. Toxicol. Chem., 18(5), 873-878 (1999).
73.Johnson M. S., Holladay S. D., Lippenholz K. S., Jenkins J. L., and McCain W. C., Effects of 2,4,6-trinitrotoluene in a holistic environmental exposure regime on a terrestrial salamander, Ambystoma tigrinum, Toxicol. Pathol., 28(2), 334-341 (2000).
74.Johnson M. S., Vodela J. K., Reddy G., and Holladay S. D., Fate and the biochemical effects of 2,4,6-trinitrotoluene exposure to tiger salamanders (Ambystoma tigrinum), Ecotoxicol. Environ. Safe., 46(2), 186-191 (2000).
75.Johnson M. S., Ferguson J. W., and Holladay S. D., Immune effects of oral 2,4,6-trinitrotoluene (TNT) exposure to the white-footed mouse, Peromyscus leucopus, Int. J. Toxicol., 19(1), 5-11 (2000).
76.Reddy G., Chandra S. A. M., Lish J. W., and Qualls Jr. C.W., Toxicity of 2,4,6-trinitrotoluene (TNT) in hispid cotton rats (Sigmodon hispidus): Hematological, biochemical, and pathological effects, Int. J. Toxicol., 19(3), 169-177 (2000).
77.孫榮康、瞿美林、陸才正,「火炸藥工業的污染及其防治」,3,兵器工業出版社(1990)。
78.Davenport R., Johnson L. R., Schaeffer D .J., and Balbach H., Phototoxicology-1. Light-Enhanced toxicity of TNT and some related compounds to Daphnia magna and lytechinus variagatus embryos, Ecotox. Environ. Safe., 27(1), 14-22 (1994).
79.Johnson L. R., Davenport R., Balbach H., and Schaeffer D. J., Phototoxicology-3. Comparative toxicity of trinitrotoluene and aminodinitrotoluenes to Daphnia magna, Dugesia dorotocephala, and sheep erytrocytes, Ecotoxico. Environ., 27(1), 34-49 (1994).
80.Berglind R., and Liljedahl, B. 1998. Miljöfarliga ämnen i dumpad ammunition. FOA-R-96-00299-864-SE.
81.Fuller M. E., and Manning J., Evidence for differential effects of 2,4,6-trinitroluene and other munitions compounds on specific subpopulation of soil microbial communities, Environ. Toxicol. Chem., 17(11), 2185-2195 (1998).
82.Mishra D., and Farrell J., Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy, Environ. Sci. Technol., 39(2), 645-650 (2005).
83.Roberts W. C., and Hartley W. R., Drinking water health advisory: Munitions, United States Environmental, USEPA. (1992).
84.Stephan C. E., Mount D. I., Hansen D. J., Gentile J. H., and Brungs W.A., Guidelines for deriving numerical water quality criteria for the protection of aquatic organisms and their uses, PB85-227049, USEPA. (1985).
85.Singh J., Comfort S. D.,and Shea P. J., Long-term RDX sorption and fate in soil, J. Environ. Qual., 27(3), 572-577 (1998).
86.Boopathy R., Kulpa C. F., and Wilson M., Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp.(B strain), Appl. Microbiol. Biotechnol., 39(2), 270-275 (1993).
87.Boopathy R., Manning J., and Kulpa C. F., A Laboratory Study of the Bioremediation of 2,4,6-trinitrotoluene-contaminated soil using Aerobic/Anoxic soil slurry reactor, Water Environ. Res., 70(1), 80-86 (1998).
88.Boopathy R., Bioremediation of explosives contaminated soil, nt. Biodeterior. Biodegrad., 46(1), 29-36 (2000).
89.Pischa Wanaratna, Christos Christodoulatos, Mohammed Sidhoum, Kinetics of RDX degradation by zero-valent iron (ZVI), J. Hazard. Mater., 136(1), 68–74 (2006).
90.Reynolds G. W., Hoff J. T., and Gillham R. W., Sampling bias caused by materials used to monitor halocarbons in groundwater, Environ. Sci. Technol., 24(1), 135-142 (1990).
91.Gillhan R. W., Cleaning halogenated contaminants from groundwater, U. S. Patent, 5266213 (1993).
92.Sweeny K. H., and Fischer J. R., Decomposition of halogenatedpesticides, U. S. Patent, 3737384 (1973).
93.Sweeny K. H., and Fischer J. R., Reductive degradation of halogenatedpesticides, U. S. Patent 4382865 (1972).
94.程淑芬,「斗匣式現地地下水污染復育技術之探討—含氯有機化合物乙玲價金屬反應性透水牆還原脫氯之研究」,博士論文,國立台灣大學環境工程學研究所(2000)。
95.Kastens M. L., and Kaplan J. F., TNT into phoroglucinol: a staff-industry collaborative, Ind Eng Chem., 42(1), 402-413 (1959).
96.Jenkins T. F.,and M. E. Walsh, Development of field screening methods for TNT, 2,4-DNT, and RDX in soil, Talanta, 39(4), 419-428 (1992).
97.Agrawal A., Tratnyek P. G., Reduction of nitroaromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30(1), 153-160 (1996).
98.Kim J. S., Shea P. J., Yang J. E., and Kim J. E., Halide salts accelerate degradation of high explosives by zerovalent iron, Environ. Poll., 1(1), 1-8 (2006).
99.李曉嵐,「奈米鐵粉結合電動力法處理含硝酸鹽土壤之研究」,碩士論文,國立中山大學環境工程研究所(2002)。
100.馬振基,「奈米材料科技原理與應用」,全華科技圖書公司(2003)。
101.魏明芬,「磁性金屬氧化物奈米粒的製備與鑑定」,碩士論文,國立中正大學化學研究所(2002)。
102.Reetz M. T. and Helbig W., Size-selective synthesis of nanostructured transition metal cluster, J. Am. Chem. Soc., 116(16), 7401-7402 (1994).
103.Ponder S. M., Darab J. G., and Mallouk T. E., Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, uanoscale zero-valent iron, Environ. Sci. Technol., 34(12), 2564-2570 (2000).
104.Hundal L. S., Singh J., Bier E. L., Shea P. J., Comfort S. D. and Powers W. L., Removal of TNT and RDX from water and soil using iron metal, Environ. Pol., 97(1), 55-64 (1997).
105.Joel Z.Bandstra, Rosemarie Miehr, Richard L. Johnson, and Paul G. Trantnyek, Reduction of 2,4,6-Trinitrotoluene by iron metal: kinetic controls on product distributions in batch experiments, Environ. Sci. Technol., 1(39), 230-238 (2005).
106.Nefso, E. K., Burns, S. E., McGrath, and C. J., Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron, J. Hazard Mater, 123(1-3), 79-88 (2005).
107.Bandstra, J. Z., Miehr, R., Johnson, R. L., Tratnyek, and P. G., Reduction of 2,4,6-trinitrotoluene by iron metal: Kinetic controls on product distributions in batch experiments, Environ. Sci. Technol., 39 (1), 230-238 (2005).
108.Hofstetter T. B., Heijman C. G., Haderlein S. B., Holliger. C., and Schwarzenbach R. P., Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions, Environ. Sci. Technol., 33 (9) 1479–1487 (1999).
109.Brannon J.M., Price C.B., adn Hayes C., Abiotic transformation of TNT in montmorillonite and soil suspensions under reducing conditions, Chemosphere, 36(6) 1453–1462 (1998).
110.Barrows S. E., Cramer C. J., and Truhlar D. G., Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution, Environ. Sci. Technol., 30(10) 3028–3038 (1996).
111.Klausen J., Troeber S. P., and Haderlein, Schwarzenbach R. P., Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions, Environ. Sci. Technol., 29(9) 2396–2404 (1995).
112.Schwarzenbach R. P., Stierli R., Lanz K., Zeyer J., and Quinone, Iron porphyrin mediated reduction of nitroaromatic compounds in homogenous aqueous solutions, Environ. Sci. Technol., 24(10) 1566–1574 (1990).
113.Bhatt, M., Zhao, J.-S., Halasz A., and Hawari J., Biodegradation of hexahydro-1,3,5-nitro-1,3,5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment, J. Ind. Microbiol. Biotechnol., 33(10), 850-858 (2006).
114.Hawari J., Halasz A., Sheremata T., Beaudet S., Groom C., L. Paquet, Rhofir C., Ampleman G., and Thiboutot, Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge, Appl. Environ. Microbiol., 66(6), 2652–2657 (2000).
115.Mu, Y., Yu, H. Q., Zheng, J. C., Zhang, S. J., Sheng, and G. P., Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron, Chemosphere, 54(7), 789-794(2004).
116.Irene M. C. L.,Chester S. C. L., Keith C. K. L., Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal, Water Res., 40(5), 595-605 (2006).
117.Flavia C. C. M., Graziclli C.O., Maria H. A., Jose D. A., Waldemar A. A. M., and Rochel M. L., Highly reactive species formed by interface reaction between Fe(0)-iron oxides particles: An efficient electron transfer system for environmental applications, Appl. Catal. A-Gen., 307(2), 195-204 (2006).
118.劉宇杰,「表面改質之奈米零價鐵及其在處理含鉻污染地下水體之研究」,碩士論文,元智大學化學工程與材料科學學系(2006)。
119.Zhu., B. W., Lim, T. T., and Feng, J., Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica, Chemosphere, 65(7), 1137-1145 (2006).
120.Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., and Maurice, C., Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil, Environ. Pollut., 144(1), 62-69 (2006).
121.Huang, Y. H., and Zhang, T. C., Reduction of nitrobenzene and formation of corrosion coatings in zerovalent iron systems, Water Res., 40(16), 3075-3082 (2006).
122.Liou, Y. H., Lo, S. L., Kuan, W. H., Lin, C. J., and Weng, S. C., Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate, Water Res., 40(13), 2485-2492 (2006).
123.Yamashita, T., and Hayes, P., Effect of curve fitting parameters on quantitative analysis of Fe0.94O and Fe2O3 using XPS, J. Electron Spectrosc., 152(1-2), 6-11 (2006).
124.Varga R., and Zeman S., Decomposition of some polynitro arenes initiated by heat and shock - Part I. 2.4,6-Trinitrotoluene, J. Hazard. Mater., 132(2-3), 165-170 (2006).
125.Sorenson, Jr. and Kent S., Emplacement of treatment agents using soil fracturing for remediation of subsurface environmental contamination, U. S. Patent, 7,179,381 (2007).
126.Andres; Ronald P., amd Alicia T., Fe/Au nanoparticles and methods, U. S. Patent, 7,186,398 (2007).
127.Zhang, W., Chen, L., Chen, H., and Xia, S.-Q., The effect of Fe0/Fe2+/Fe3+ on nitrobenzene degradation in the anaerobic sludge, J. Hazard. Mater., 143(1-2), 57-64 (2007).
128.Su C., and Puls, R. W., Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers, Chemosphere, 67(8), 1653-1662 (2007).
129.Fuller M.E., Schaefer C. E, Lowey J. M., Degradation of explosives-related compounds using nickel catalysts, Chemosphere, 67(3), 419-427 (2007).
130.Smith J. N., Liu J., Espino M. A., and Cobb G. P., Age dependent acute oral toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two anaerobic N-nitroso metabolites in deer mice (Peromyscus maniculatus), Chemosphere, 67(11), 2267-2273 (2007).
131.Bromage E. S., Lackie T., Unger M. A., Ye J., and Kaattari S. L., The development of a real-time biosensor for the detection of trace levels of trinitrotoluene (TNT) in aquatic environments, Biosens. Bioelectron., 22(11), 2532-2538 (2007).
132.Justes D. R., Talaty N., Cotte-Rodriguez I., and Cooks R. G., Detection of explosives on skin using ambient ionization mass spectrometry, Chem. Commun., 1(21), 2142-2144 (2007).
133.Panikov N. S., Sizova M. V., Ros D., Christodoulatos C., Balas W., and Nicolich S., Title: Biodegradation kinetics of the nitramine explosive CL-20 in soil and microbial cultures, Biodegradation, 18(3), 317-332 (2007).
134.Liu J., Severt S. A., Pan X. P., Smith P. N., McMurry S. T ., Cobb G. P., Development of an extraction and cleanup procedure for a liquid chromatographic-mass spectrometric method to analyze octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in eggs, Talanta, 71(2), 627-631 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top