1.Crockett A. B., Craig H. D., and Jenkins T. F., Field sampling and selecting on-site analytical methods for explosives in water, Field Facilities Forum Issue, EPA/600/S-99/002, 2, USEPA., (1999).
2.Rittmann B. E., Natural attenuation for groundwater remediation, A report of the National research Council, 5-8 (2000).
3.Alnaizy R., and Akgerman A., Oxidative treatment of high explosives contaminated wastewater, Wat. Res., 33(9), 2021-2030 (1999).
4.Pennington J. C., and Brannon J. M., Environmental fate of explosives, Thermochimica Acta, 384(1-2), 163-172 (2002).
5.Singh J., Comfort S. D. and Shea P. J., Iron-mediated remediation of RDX-contaminated waster and soil under controlled Eh/pH, Environ. Sci. Technol., 33(9), 1488-1494 (1999).
6.孫榮康、翟美林、陸才正,「火炸藥工業的污染及其防治」,38-138(TNT);139-207 (RDX及HMX),兵器工業出版社(1990)。
7.鍾一鵬、胡雅選、江宏志,「國外炸藥性能手冊」,4-7 (TNT);75-78 (RDX);79-81 (HMX),兵器工業出版社(1990)。
8.黃振家,「TNT製程減廢及其廢水焚燒效率提昇研究」,聯勤203廠與中正理工學院學術合作研究計畫,6-10,中正理工學院應化系(1977)。
9.Mishra D., and Farrell J., Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy, Environ. Sci. Technol., 39(2), 645-650 (2005).
10.Su C., and Puls R. W., Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate, Environ. Sci. Technol., 38(9), 2715-2720 (2004).
11.Dave G., Nilsson E., and Wernersson A. S., Sediment and water phase toxicity and UV-activation of six chemicals used in military explosives, Aquatic Ecosystem Health Manage., 3(3), 291-299 (2000).
12.Doll, Daniel W., Hanks, Jami M., Allred, Alan G., Niles, and John B., Reduced sensitivity, melt-pourable TNT replacements, U.S. Patent, 7,067,024 (2006).
13.Davis, and Matthew C., Trinitrotoluene (TNT) and environmentally friendly methods for making the same, U.S. Patent, 6,881,871 (2005).
14.Arcuri, Kym B., Goetsch, Duane A., Smith, Ryan M., Schmit, Steven J., Miller, and Paul L., Reclaiming RDX and TNT from composition B and composition B containing military shells, U.S. Patent, 6,777,586 (2004).
15.Taylor, William J., Goetsch, and Duane A., Reclaiming TNT and aluminum from tritonal and tritonal-containing munitions, U.S. Patent, 6,476,286 (2002).
16.Tobinick, and Edward L., TNT inhibitors for the treatment of neurological disorders, U.S. Patent, 6,177,077 (2001).
17.Hater, Gary R., Jerger, Douglas E., Green, Roger B., Barnes, Paul W., Woodhull, and Patrick M., Treatment of TNT-contaminated soil, U.S. Patent, 6,066,772 (2000).
18.Voigt, Jr., and William H., Simplified emulsion coating of crystalline explosives in a TNT melt, U.S. Patent, 5,358,587 (1994).
19.Stanton, and Horace D., Reed, Jr., Russell, Polymer modified TNT containing explosives, U.S. Patent, 4,445,948 (1984).
20.Portnoy, and Seymour, Production of fine-grained cast charges with unoriented crystal structure of TNT or explosive compositions containing TNT, U.S. Patent, 4,360,394 (1982).
21.Roane, and Asa E., TNT State sensor, U.S. Patent, 4,329,131 (1982).
22.Voigt, Jr., William H., Banker, and Bernard R., Preparation of TNT-thermoplastic polymer granules readily soluble in a TNT melt, U.S. Patent, 4,325,759 (1982).
23.Hendrickx, and Andreas J. J., Desensitized TNT, its preparation and use, U.S. Patent, 4,300,001 (1981).
24.Voigt, Jr., and William H., Castable TNT compositions containing a broad spectrum preformed thermoplastic polyurethane elastomer additive, U.S. Patent, 4,284,442 (1981).
25.Ribaudo, Charles, Leccacorvi, John F., Gilbert, and Everett E., Process for recovering TNT isomers, U.S. Patent, 4,258,224 (1981).
26.Lundstrom, Norman H., Reed, Jr., and Russell, Impermeable polymer bomb liner for use with TNT containing explosives, U.S. Patent, 4,152,987 (1979).
27.Heller, and Carl A., Analytical method for TNT in water, U.S. Patent, 4,108,604 (1978).
28.Voigt, Jr., William H., Pell, Lawrence W., Picard, and Jean P., Cast TNT explosive containing polyurethane elastomer which is free from oily exudation and voids and uniformly remeltable, U.S. Patent, 4,012,245 (1977).
29.Gilligan, William H., Hall, and Thomas N., Removal of tetranitromethane from TNT plant waste gases, U.S. Patent, 4,003,977 (1977).
30.Gilbert, and Everett E., Purification of TNT with magnesium sulfite-bisulfite mixtures, U.S. Patent, 4,003,953 (1977).
31.Hall, Thomas N., Gilligan, and William H., Removal of tetranitromethane from TNT plant waste, U.S. Patent, 4,001,373 (1977).
32.Voigt, Jr., and William H., Process for suspending particulate additives in molten TNT, U.S. Patent, 4,000,021 (1976)
33.Gilbert, and Everett E., Process for purifying TNT, U.S. Patent, 3,956,409 (1976).
34.孫榮康、瞿美林、陸才正,「火炸藥工業的污染及其防治」,94-97,兵器工業出版社(1990)。
35.Bier E. L., Singh J., Li Z.M., Comfort S.D., and Shea P. J., Remediating Hexahydro-1,3,5-trinitro-1,2,5-trazine-contamenated Water and Soil by Fenton Oxidation, Environ. Toxicol. Chem., 18(6), 1078-1084 (1999).
36.孫榮康、瞿美林、陸才正,「火炸藥工業的污染及其防治」,139-164,兵器工業出版社(1990)。
37.Arcuri, Kym B., Goetsch, Duane A., Smith, Ryan M., Schmit, Steven J., Miller, and Paul L., Reclaiming RDX and TNT from composition B and composition B containing military shells, U.S. Patent, 6,777,586 (2004).
38.Moser, Guy P., Gray, and Neil C. C., Compost decontamination of soil contaminated with TNT, HMX and RDX with aerobic and anaerobic microorganisms, U.S. Patent, 5,998,199 (1998).
39.Gallagher, Paula M., Krukonis, Val J., Coffey, and Michael P., Gas anti-solvent recrystallization and application for the separation and subsequent processing of RDX and HMX, U.S. Patent, 5,389,263 (1995).
40.Lukasavage, William J., Nicolich, Steven, Slagg, and Norman, Process for preparation of RDX, U.S. Patent, 5,250,687 (1993).
41.Lewicki, and Jerry W., Separation of RDX and HMX, U.S. Patent, 4,767,854 (1988).
42.Svensson, Leif, Nyqvist, Jan-Olof, Westling, and Lars, Crystallization method for HMX and RDX, U.S. Patent, 4,638,065 (1987).
43.Cattran, Doris E., Stanford, Thomas B., Graffeo, and Anthony P., Quantification of the munitions, HMX, RDX, and TNT in waste water by liquid chromatography, U.S. Patent, 4,252,537 (1981).
44.Brumley, Charles D., Staples, and John M., Recycle of spent acid in nitrolysis of hexamine to RDX, U.S. Patent, 4,163,845 (1979).
45.Lavertu, Roger R., Godbout, and Antonin, Process for spheroidization of RDX crystals, U.S. Patent, 4,065,529 (1977).
46.Wells, and Franklin B., Flexible explosive composition comprising particulate RDX, HMX, or PETN and a high viscosity introcellulose binder plasticized with TEGDN, U.S. Patent, 4,014,720 (1977).
47.Sarreal, and Philip M., Lettuce named HMX 7555, U.S. Patent, 6,555,735 (2003).
48.Lukasavage, William J., Behrmann, Lawrence A., Voreck, and Wallace E., Process for making an HMX product, U.S. Patent, 6,214,988 (2001).
49.Lukasavage, and William J., HMX compositions and processes for their preparation, U.S. Patent, 6,194,571 (2001).
50.Moser, Guy P., Gray, and Neil C. C., Compost decontamination of soil contaminated with TNT, HMX and RDX with aerobic and anaerobic microorganisms, U.S. Patent, 5,998,199 (1999).
51.Gallagher, Paula M., Krukonis, Val J., Coffey, and Michael P., Gas anti-solvent recrystallization and application for the separation and subsequent processing of RDX and HMX, U.S. Patent, 5,389,263 (1995).
52.Lukasavage, William, Nicolich, Steven, Alster, and Jack, Process of making impact insensitive Alpha-HMX, U.S. Patent, 5,268,469 (1993).
53.Levinthal, and Michael L., Recovery of nitric acid and sulfuric acids in production of beta HMX, U.S. Patent, 4,925,936 (1990).
54.Heinemeyer, Klaus, Redecker, Klaus, Sassmannshausen, and Ulrich, Process for producing fine-grained .beta.-HMX, U.S. Patent, 4,794,180 (1988).
55.Levinthal, and Michael L., Crystallization of beta HMX, U.S. Patent, 4,785,094 (1988).
56.Lewicki, and Jerry W., Separation of RDX and HMX, U.S. Patent, 4,767,854 (1988).
57.Svensson, Leif, Nyqvist, Jan-Olof, Westling, and Lars, Crystallization method for HMX and RDX, U.S. Patent, 4,638,065 (1987).
58.McGuire, Raymond R., Coon, Clifford L., Harrar, Jackson E., Pearson, and Richard K., Method for synthesizing HMX, U.S. Patent, 4,432,902 (1984).
59.Kincaid, John F., Reed, Jr., and Russell, Bonding agent for HMX (cyclotetramethylenetetranitramine), U.S. Patent, 4,350,542 (1982).
60.Reed, Jr., and Russell, Modification of ballistic properties of HMX by spray drying, U.S. Patent, 4,092,383 (1978).
61.Hoffman, Richard E., Lindsay, and Edward K., Polymeric-coated HMX crystals for use with propellant materials, U.S. Patent, 4,043,850 (1977).
62.Wells, and Franklin B., Flexible explosive composition comprising particulate RDX, HMX, or PETN and a high viscosity introcellulose binder plasticized with TEGDN, U.S. Patent, 4,014,720 (1977).
63.Wells, and Franklin B., Explosive composition comprising HMX, RDX, or PETN and a high viscosity nitrocellulose binder plasticized with TMETN, U.S. Patent, 3,943,017 (1976).
64.International Standard ISO, Water quality-determination of the inhibition of the mobility of Daphnia magma Straus (Cladocera, Crustacea)-acute toxicity test (1996).
65.Dave G., Bjornestad E., and Sundqvist M., Reproduction of Daphnia magna (clone 5) (Cladocera) in three media with three diets, Crustaceana, 61(3), 294-300 (1991).
66.Talmage S. S., Opresko D. M., Maxwell C. J., Welsh C. J. E., Cretella F. M., Hovatter P. S., and Daniel F. B., Reviews Environ. Contam. Toxicol., 161(9), 1-157 (1999).
67.Robidoux P. Y., Hawari J., Thiboutot S., Ampleman G., and Sunahara G. I., Acute Toxicity of. 2,4,6-Trinitrotoluene in Earthworm (Eisenia. andrei), Ecotoxicol. Ecotox. Environ. Safe., 44(3), 311-321 (1999).
68.Robidoux P. Y., Hawari J., Thiboutot S., Ampleman G.,and Sunhara G. I., Chronic toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in soil determined using the earthworm (Eisenia andrei) reproduction test, Environ. Pollut., 111(2), 283-292 (2001).
69.Robidoux P. Y., Sevendsen C., Caumartin J., Hawari J., Ampleman G., Thiboutot S., Weeks J.M., and Sunahara G.I., Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test, Environ. Toxicol. Chem., 19(7), 1764-1773 (2000).
70.Renoux A. Y., Sarrazin M., Hawari J., and Sunhara G. I., Transformation of 2,4,6-Trinitrotoluene in soil in the presence of the earthworm Eisenia andrei, Environ. Toxicol. Chem., 19(6), 1473-1480 (2000).
71.Fuller M. E., and Manning J., Evidence for differential effects of 2,4,6-trinitroluene and other munitions compounds on specific subpopulation of soil microbial communities, Environ. Toxicol. Chem., 17(11), 2185-2195 (1998).
72.Johnson M. S., Franke L. S., Lee R. B., and Holladay S. D., Bioaccumulation of 2,4,6-trinitrotoluene and polychlorinated biphenyls through two routes of exposure in a terrestrial amphibian: Is the dermal route significant?, Environ. Toxicol. Chem., 18(5), 873-878 (1999).
73.Johnson M. S., Holladay S. D., Lippenholz K. S., Jenkins J. L., and McCain W. C., Effects of 2,4,6-trinitrotoluene in a holistic environmental exposure regime on a terrestrial salamander, Ambystoma tigrinum, Toxicol. Pathol., 28(2), 334-341 (2000).
74.Johnson M. S., Vodela J. K., Reddy G., and Holladay S. D., Fate and the biochemical effects of 2,4,6-trinitrotoluene exposure to tiger salamanders (Ambystoma tigrinum), Ecotoxicol. Environ. Safe., 46(2), 186-191 (2000).
75.Johnson M. S., Ferguson J. W., and Holladay S. D., Immune effects of oral 2,4,6-trinitrotoluene (TNT) exposure to the white-footed mouse, Peromyscus leucopus, Int. J. Toxicol., 19(1), 5-11 (2000).
76.Reddy G., Chandra S. A. M., Lish J. W., and Qualls Jr. C.W., Toxicity of 2,4,6-trinitrotoluene (TNT) in hispid cotton rats (Sigmodon hispidus): Hematological, biochemical, and pathological effects, Int. J. Toxicol., 19(3), 169-177 (2000).
77.孫榮康、瞿美林、陸才正,「火炸藥工業的污染及其防治」,3,兵器工業出版社(1990)。
78.Davenport R., Johnson L. R., Schaeffer D .J., and Balbach H., Phototoxicology-1. Light-Enhanced toxicity of TNT and some related compounds to Daphnia magna and lytechinus variagatus embryos, Ecotox. Environ. Safe., 27(1), 14-22 (1994).
79.Johnson L. R., Davenport R., Balbach H., and Schaeffer D. J., Phototoxicology-3. Comparative toxicity of trinitrotoluene and aminodinitrotoluenes to Daphnia magna, Dugesia dorotocephala, and sheep erytrocytes, Ecotoxico. Environ., 27(1), 34-49 (1994).
80.Berglind R., and Liljedahl, B. 1998. Miljöfarliga ämnen i dumpad ammunition. FOA-R-96-00299-864-SE.
81.Fuller M. E., and Manning J., Evidence for differential effects of 2,4,6-trinitroluene and other munitions compounds on specific subpopulation of soil microbial communities, Environ. Toxicol. Chem., 17(11), 2185-2195 (1998).
82.Mishra D., and Farrell J., Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy, Environ. Sci. Technol., 39(2), 645-650 (2005).
83.Roberts W. C., and Hartley W. R., Drinking water health advisory: Munitions, United States Environmental, USEPA. (1992).
84.Stephan C. E., Mount D. I., Hansen D. J., Gentile J. H., and Brungs W.A., Guidelines for deriving numerical water quality criteria for the protection of aquatic organisms and their uses, PB85-227049, USEPA. (1985).
85.Singh J., Comfort S. D.,and Shea P. J., Long-term RDX sorption and fate in soil, J. Environ. Qual., 27(3), 572-577 (1998).
86.Boopathy R., Kulpa C. F., and Wilson M., Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp.(B strain), Appl. Microbiol. Biotechnol., 39(2), 270-275 (1993).
87.Boopathy R., Manning J., and Kulpa C. F., A Laboratory Study of the Bioremediation of 2,4,6-trinitrotoluene-contaminated soil using Aerobic/Anoxic soil slurry reactor, Water Environ. Res., 70(1), 80-86 (1998).
88.Boopathy R., Bioremediation of explosives contaminated soil, nt. Biodeterior. Biodegrad., 46(1), 29-36 (2000).
89.Pischa Wanaratna, Christos Christodoulatos, Mohammed Sidhoum, Kinetics of RDX degradation by zero-valent iron (ZVI), J. Hazard. Mater., 136(1), 68–74 (2006).
90.Reynolds G. W., Hoff J. T., and Gillham R. W., Sampling bias caused by materials used to monitor halocarbons in groundwater, Environ. Sci. Technol., 24(1), 135-142 (1990).
91.Gillhan R. W., Cleaning halogenated contaminants from groundwater, U. S. Patent, 5266213 (1993).
92.Sweeny K. H., and Fischer J. R., Decomposition of halogenatedpesticides, U. S. Patent, 3737384 (1973).
93.Sweeny K. H., and Fischer J. R., Reductive degradation of halogenatedpesticides, U. S. Patent 4382865 (1972).
94.程淑芬,「斗匣式現地地下水污染復育技術之探討—含氯有機化合物乙玲價金屬反應性透水牆還原脫氯之研究」,博士論文,國立台灣大學環境工程學研究所(2000)。
95.Kastens M. L., and Kaplan J. F., TNT into phoroglucinol: a staff-industry collaborative, Ind Eng Chem., 42(1), 402-413 (1959).
96.Jenkins T. F.,and M. E. Walsh, Development of field screening methods for TNT, 2,4-DNT, and RDX in soil, Talanta, 39(4), 419-428 (1992).
97.Agrawal A., Tratnyek P. G., Reduction of nitroaromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30(1), 153-160 (1996).
98.Kim J. S., Shea P. J., Yang J. E., and Kim J. E., Halide salts accelerate degradation of high explosives by zerovalent iron, Environ. Poll., 1(1), 1-8 (2006).
99.李曉嵐,「奈米鐵粉結合電動力法處理含硝酸鹽土壤之研究」,碩士論文,國立中山大學環境工程研究所(2002)。100.馬振基,「奈米材料科技原理與應用」,全華科技圖書公司(2003)。
101.魏明芬,「磁性金屬氧化物奈米粒的製備與鑑定」,碩士論文,國立中正大學化學研究所(2002)。102.Reetz M. T. and Helbig W., Size-selective synthesis of nanostructured transition metal cluster, J. Am. Chem. Soc., 116(16), 7401-7402 (1994).
103.Ponder S. M., Darab J. G., and Mallouk T. E., Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, uanoscale zero-valent iron, Environ. Sci. Technol., 34(12), 2564-2570 (2000).
104.Hundal L. S., Singh J., Bier E. L., Shea P. J., Comfort S. D. and Powers W. L., Removal of TNT and RDX from water and soil using iron metal, Environ. Pol., 97(1), 55-64 (1997).
105.Joel Z.Bandstra, Rosemarie Miehr, Richard L. Johnson, and Paul G. Trantnyek, Reduction of 2,4,6-Trinitrotoluene by iron metal: kinetic controls on product distributions in batch experiments, Environ. Sci. Technol., 1(39), 230-238 (2005).
106.Nefso, E. K., Burns, S. E., McGrath, and C. J., Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron, J. Hazard Mater, 123(1-3), 79-88 (2005).
107.Bandstra, J. Z., Miehr, R., Johnson, R. L., Tratnyek, and P. G., Reduction of 2,4,6-trinitrotoluene by iron metal: Kinetic controls on product distributions in batch experiments, Environ. Sci. Technol., 39 (1), 230-238 (2005).
108.Hofstetter T. B., Heijman C. G., Haderlein S. B., Holliger. C., and Schwarzenbach R. P., Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions, Environ. Sci. Technol., 33 (9) 1479–1487 (1999).
109.Brannon J.M., Price C.B., adn Hayes C., Abiotic transformation of TNT in montmorillonite and soil suspensions under reducing conditions, Chemosphere, 36(6) 1453–1462 (1998).
110.Barrows S. E., Cramer C. J., and Truhlar D. G., Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution, Environ. Sci. Technol., 30(10) 3028–3038 (1996).
111.Klausen J., Troeber S. P., and Haderlein, Schwarzenbach R. P., Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions, Environ. Sci. Technol., 29(9) 2396–2404 (1995).
112.Schwarzenbach R. P., Stierli R., Lanz K., Zeyer J., and Quinone, Iron porphyrin mediated reduction of nitroaromatic compounds in homogenous aqueous solutions, Environ. Sci. Technol., 24(10) 1566–1574 (1990).
113.Bhatt, M., Zhao, J.-S., Halasz A., and Hawari J., Biodegradation of hexahydro-1,3,5-nitro-1,3,5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment, J. Ind. Microbiol. Biotechnol., 33(10), 850-858 (2006).
114.Hawari J., Halasz A., Sheremata T., Beaudet S., Groom C., L. Paquet, Rhofir C., Ampleman G., and Thiboutot, Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge, Appl. Environ. Microbiol., 66(6), 2652–2657 (2000).
115.Mu, Y., Yu, H. Q., Zheng, J. C., Zhang, S. J., Sheng, and G. P., Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron, Chemosphere, 54(7), 789-794(2004).
116.Irene M. C. L.,Chester S. C. L., Keith C. K. L., Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal, Water Res., 40(5), 595-605 (2006).
117.Flavia C. C. M., Graziclli C.O., Maria H. A., Jose D. A., Waldemar A. A. M., and Rochel M. L., Highly reactive species formed by interface reaction between Fe(0)-iron oxides particles: An efficient electron transfer system for environmental applications, Appl. Catal. A-Gen., 307(2), 195-204 (2006).
118.劉宇杰,「表面改質之奈米零價鐵及其在處理含鉻污染地下水體之研究」,碩士論文,元智大學化學工程與材料科學學系(2006)。119.Zhu., B. W., Lim, T. T., and Feng, J., Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica, Chemosphere, 65(7), 1137-1145 (2006).
120.Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., and Maurice, C., Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil, Environ. Pollut., 144(1), 62-69 (2006).
121.Huang, Y. H., and Zhang, T. C., Reduction of nitrobenzene and formation of corrosion coatings in zerovalent iron systems, Water Res., 40(16), 3075-3082 (2006).
122.Liou, Y. H., Lo, S. L., Kuan, W. H., Lin, C. J., and Weng, S. C., Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate, Water Res., 40(13), 2485-2492 (2006).
123.Yamashita, T., and Hayes, P., Effect of curve fitting parameters on quantitative analysis of Fe0.94O and Fe2O3 using XPS, J. Electron Spectrosc., 152(1-2), 6-11 (2006).
124.Varga R., and Zeman S., Decomposition of some polynitro arenes initiated by heat and shock - Part I. 2.4,6-Trinitrotoluene, J. Hazard. Mater., 132(2-3), 165-170 (2006).
125.Sorenson, Jr. and Kent S., Emplacement of treatment agents using soil fracturing for remediation of subsurface environmental contamination, U. S. Patent, 7,179,381 (2007).
126.Andres; Ronald P., amd Alicia T., Fe/Au nanoparticles and methods, U. S. Patent, 7,186,398 (2007).
127.Zhang, W., Chen, L., Chen, H., and Xia, S.-Q., The effect of Fe0/Fe2+/Fe3+ on nitrobenzene degradation in the anaerobic sludge, J. Hazard. Mater., 143(1-2), 57-64 (2007).
128.Su C., and Puls, R. W., Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers, Chemosphere, 67(8), 1653-1662 (2007).
129.Fuller M.E., Schaefer C. E, Lowey J. M., Degradation of explosives-related compounds using nickel catalysts, Chemosphere, 67(3), 419-427 (2007).
130.Smith J. N., Liu J., Espino M. A., and Cobb G. P., Age dependent acute oral toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two anaerobic N-nitroso metabolites in deer mice (Peromyscus maniculatus), Chemosphere, 67(11), 2267-2273 (2007).
131.Bromage E. S., Lackie T., Unger M. A., Ye J., and Kaattari S. L., The development of a real-time biosensor for the detection of trace levels of trinitrotoluene (TNT) in aquatic environments, Biosens. Bioelectron., 22(11), 2532-2538 (2007).
132.Justes D. R., Talaty N., Cotte-Rodriguez I., and Cooks R. G., Detection of explosives on skin using ambient ionization mass spectrometry, Chem. Commun., 1(21), 2142-2144 (2007).
133.Panikov N. S., Sizova M. V., Ros D., Christodoulatos C., Balas W., and Nicolich S., Title: Biodegradation kinetics of the nitramine explosive CL-20 in soil and microbial cultures, Biodegradation, 18(3), 317-332 (2007).
134.Liu J., Severt S. A., Pan X. P., Smith P. N., McMurry S. T ., Cobb G. P., Development of an extraction and cleanup procedure for a liquid chromatographic-mass spectrometric method to analyze octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in eggs, Talanta, 71(2), 627-631 (2007).