|
[1]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1994. [2]Y. G. Leu, T. T. Lee, and W. Y. Wang, “On-line tuning of fuzzy-neural network for adaptive control of nonlinear dynamical systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 27, no. 6, pp. 1034-1043, 1997. [3]C. H. Wang, T. C. Lin, T. T. Lee, and H. L. Liu, “Adaptive hybrid intelligent control for uncertain nonlinear dynamical systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 32, no. 5, pp. 583-597, 2002. [4]J. Y. Chen, P. S. Tsai, and C. C. Wong, “Adaptive design of a fuzzy cerebellar model arithmetic controller neural network,” IEE, Contr. Theory Appl., vol. 152, no. 2, pp. 133-137, 2005. [5]C. M. Lin and Y. F. Peng, “Adaptive CMAC-based supervisory control for uncertain nonlinear systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 2, pp. 1248-1260, 2004. [6]J. H. Park, S. H. Huh, S. H. Kim, S. J. Seo, and G. T. Park, “Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks,” IEEE Trans. Neural Networks, vol. 16, no. 2, pp. 414-422, 2005. [7]B. S. Chen, C. H. Lee, and Y. C. Chang, “ tracking design of uncertain nonlinear SISO systems: Aadaptive fuzzy approach,” IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 32-43, 1996. [8]W. Y. Wang, M. L. Chan, C. C. J. Hsu, and T. T. Lee, “ tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach,” IEEE Trans. Syst., Man, Cybern. B, vol. 32, no. 4, pp. 483-492, 2002. [9]S. Tong, H. X. Li, and W. Wang, “Observer-based adaptive fuzzy control for SISO nonlinear systems,” Fuzzy Sets Syst., vol. 148, no. 3, pp. 355-376, 2004. [10]C. M. Lin, Y. F. Peng, and C. F. Hsu, “Robust cerebellar model articulation controller design for unknown nonlinear systems,” IEEE Trans. Circuits Syst. II, vol. 51, no. 7, pp. 354-358, 2004. [11]J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” Trans. ASME, J. Dyn. Syst. Meas. Control, vol. 97, no. 3, pp. 220-227, 1975. [12]S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks,” IEEE Control Syst. Mag., vol. 12, no. 2, pp. 23-30, 1992. [13]J. C. Jan and S. L. Hung, “High-order MS_CMAC neural network,” IEEE Trans. Neural Networks, vol. 12, no. 3, pp. 598-603, 2001. [14]R. J. Wai, C. M. Lin, and Y. F. Peng, “Robust CMAC neural network control for LLCC resonant driving linear piezoelectric ceramic motor,” Proc. IEE, Contr. Theory Appl., vol. 150, no. 3, pp. 221-232, 2003. [15]Y. F. Peng, R. J. Wai, and C. M. Lin, “Implementation of LLCC-resonant driving circuit and adaptive CMAC neural network control for linear piezoelectric ceramic motor,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 35-48, 2004. [16]C. T. Chiang and C. S. Lin, “CMAC with general basis functions,” Neural Networks, vol. 9, no. 7, pp. 1199-1211, 1996. [17]C. M. Lin and Y. F. Peng, “Missile guidance law design using adaptive cerebellar model articulation controller,” IEEE Trans. Neural Networks, vol. 16, no. 3, pp. 636-644, 2005. [18]Y. H. Kim and F. L. Lewis, “Optimal design of CMAC neural-network controller for robot manipulators,” IEEE Trans. Syst., Man, Cybern. C, vol. 30, pp. 22–31, Feb. 2000. [19]S. Jagannathan, “Discrete-time CMAC NN control of feedback linearizable nonlinear systems under a persistence of excitation,” IEEE Trans. Neural Networks, vol. 10, pp. 128–137, Jan. 1999. [20]C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for dynamic systems control,” IEEE Trans. Neural Networks, vol. 6, pp. 144–156, Jan. 1995. [21]H. J. Uang and B. S. Chen, “Robust adaptive optimal tracking design for uncertain missile systems: a fuzzy approach,” Fuzzy Sets and Syst., vol. 126, pp. 63-87, Feb. 2002. [22]I. Rhee and J.L. Speyer, “A game theoretic approach to a finite-time disturbance attenuation problem,” IEEE Trans. Automat. Control vol. 36 pp. 1021–1032. Sep. 1991. [23]A. Stoorvogel, The Control Problem: A State Approach, Prentice-Hall, Englewood Cli7s, NJ, 1992. [24]D. Marr, “A theory of cerebellar cortex,” J. Physiol., vol. 202, pp. 437-470, 1969. [25]J. S. Albus, “A theory of cerebellar function,” Math. Biosci., vol. 10, pp. 25-61, 1971. [26]D. J. Linden, “Cerebellar long-term depression as investigated in a cell culture preparation,” Behav. Brain Sci., vol. 19, pp. 339-346, 1996. [27]P. Chauvet and G. A. Chauvet, “Mathematical conditions for adaptive control in Marr’s model of the sensorimotor system,” Neural Networks, vol. 8, no. 5, pp. 693-706, 1995. [28]M. Ito, The Cerebellum and Neural Control. Raven Press, New York, 1984. [29]D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory. New York: Wiley, 1949. [30]M. Ito, “Mechanisms of motor learning in the cerebellum,” Brain Research Interactive, vol. 886, pp. 237-245, 2000. [31]L. Sivan, Microware Tube Transmitters, London, Chapman & Hall, 1994. [32]A. S. Gilmour, Principles of Traveling Wave Tubes, Norwood, Artech House, 1994. [33]A. I. Pressman, Switching Power Supply Design, Singapore, McGraw-Hill, 1992. [34]C. Iannello, S. Luo, and I. Batarseh, “Small-signal and transient analysis of a full-bridge, zero-current-switched PWM converter using an average,” IEEE Trans. Power Electron, vol. 18, no. 3, pp. 793-801, 2003. [35]V. S. C. Raviraj and P. C. Sen, “Comparative study of proportional-integral, sliding mode and fuzzy logic controllers for power converters,” IEEE Trans. Ind. Appl., vol. 33, no. 2, pp. 518-524, 1997. [36]A. Diordiev, O. Ursaru, M. Lucanu, and L. Tigaeru, “A hybrid PID-fuzzy controller for DC-DC converters,” International Symposium on Signals, Circuits, and Systems, vol. 1, pp. 97-100, 2003
|