|
Reference [1]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1994. [2]Y. G. Leu, T. T. Lee, and W. Y. Wang, “On-line tuning of fuzzy-neural network for adaptive control of nonlinear dynamical systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 27, no. 6, pp. 1034-1043, 1997. [3]C. H. Wang, T. C. Lin, T. T. Lee, and H. L. Liu, “Adaptive hybrid intelligent control for uncertain nonlinear dynamical systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 32, no. 5, pp. 583-597, 2002. [4]J. Y. Chen, P. S. Tsai, and C. C. Wong, “Adaptive design of a fuzzy cerebellar model arithmetic controller neural network,” Proc. IEE, Contr. Theory Appl., vol. 152, no. 2, pp. 133-137, 2005. [5] C. M. Lin and Y. F. Peng, “Adaptive CMAC-based supervisory control for uncertain nonlinear systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 2, pp. 1248-1260, 2004. [6]J. H. Park, S. H. Huh, S. H. Kim, S. J. Seo, and G. T. Park, “Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks,” IEEE Trans. Neural Networks, vol. 16, no. 2, pp. 414-422, 2005. [7] B. S. Chen, C. H. Lee, and Y. C. Chang, “ tracking design of uncertain nonlinear SISO systems: Aadaptive fuzzy approach,” IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 32-43, 1996. [8]W. Y. Wang, M. L. Chan, C. C. J. Hsu, and T. T. Lee, “ tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach,” IEEE Trans. Syst., Man, Cybern. B, vol. 32, no. 4, pp. 483-492, 2002. [9]S. Tong, H. X. Li, and W. Wang, “Observer-based adaptive fuzzy control for SISO nonlinear systems,” Fuzzy Sets Syst., vol. 148, no. 3, pp. 355-376, 2004. [10]C. M. Lin, Y. F. Peng, and C. F. Hsu, “Robust cerebellar model articulation controller design for unknown nonlinear systems,” IEEE Trans. Circuits Syst. II, vol. 51, no. 7, pp. 354-358, 2004. [11] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 4-27, 1990. [12]C. M. Lin and C. F. Hsu, “Neural-network-based adaptive control for induction servomotor drive system,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 115-123, 2002. [13]C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for dynamic systems control,” IEEE Trans. Neural Networks, vol. 6, no. 1, pp. 144-156, 1995. [14]C. M. Lin and C. F. Hsu, “Neural network hybrid control for antilock braking systems,” IEEE Trans. Neural Networks, vol. 14, no. 2, pp. 351-359, 2003. [15]C. M. Lin and C. F. Hsu, “Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings,” IEEE Trans. Fuzzy Systems, vol. 12, no. 5, pp. 733-742, 2004. [16]J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” Trans. ASME, J. Dyn. Syst. Meas. Control, vol. 97, no. 3, pp. 220-227, 1975. [17]S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks,” IEEE Control Syst. Mag., vol. 12, no. 2, pp. 23-30, 1992. [18]J. C. Jan and S. L. Hung, “High-order MS_CMAC neural network,” IEEE Trans. Neural Networks, vol. 12, no. 3, pp. 598-603, 2001. [19]R. J. Wai, C. M. Lin, and Y. F. Peng, “Robust CMAC neural network control for LLCC resonant driving linear piezoelectric ceramic motor,” Proc. IEE, Contr. Theory Appl., vol. 150, no. 3, pp. 221-232, 2003. [20]Y. F. Peng, R. J. Wai, and C. M. Lin, “Implementation of LLCC-resonant driving circuit and adaptive CMAC neural network control for linear piezoelectric ceramic motor,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 35-48, 2004. [21]C. T. Chiang and C. S. Lin, “CMAC with general basis functions,” Neural Networks, vol. 9, no. 7, pp. 1199-1211, 1996. [22]C. M. Lin and Y. F. Peng, “Missile guidance law design using adaptive cerebellar model articulation controller,” IEEE Trans. Neural Networks, vol. 16, no. 3, pp. 636-644, 2005. [23]D. Marr, “A theory of cerebellar cortex,” J. Physiol., vol. 202, pp. 437-470, 1969. [24]J. S. Albus, “A theory of cerebellar function,” Math. Biosci., vol. 10, pp. 25-61, 1971. [25]D. J. Linden, “Cerebellar long-term depression as investigated in a cell culture preparation,” Behav. Brain Sci., vol. 19, pp. 339-346, 1996. [26]P. Chauvet and G. A. Chauvet, “Mathematical conditions for adaptive control in Marr’s model of the sensorimotor system,” Neural Networks, vol. 8, no. 5, pp. 693-706, 1995. [27]M. Ito, The Cerebellum and Neural Control. Raven Press, New York, 1984. [28]D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory. New York: Wiley, 1949. [29]M. Ito, “Mechanisms of motor learning in the cerebellum,” Brain Research Interactive, vol. 886, pp. 237-245, 2000. [30]J. R. Layne and K. M. Passino, “Fuzzy model reference learning control for cargo ship steering,” IEEE Control Syst. Mag., vol. 13, no. 6, pp. 23-24, 1993. [31]R. S. Burns, “The use of artificial neural networks for the intelligent optimal control of surface ships,” IEEE J. Oceanic Eng., vol. 20, no. 1, pp. 65-72, 1995. [32]Y. Yang, “Direct robust adaptive fuzzy control (DRAFC) for uncertain nonlinear systems using small gain theorem,” Fuzzy Sets Syst., vol. 151, no. 1, pp. 79-97, 2005. [33]G. Rigatos and S. Tzafestas, “Adaptive fuzzy control for ship steering problem,” Mechatronics, vol. 16, no. 8, pp. 479-489, 2006. [34]Y. Zhang, B. Kosmatopoulos, P. A. Ioannou, and C. C. Chien, “ Autonomous intelligent cruise control using front and back information for tight vehicle following maneuvers,” IEEE Trans. Veh. Technol., vol. 48, no. 1, pp. 319-328, 1999. [35]T. S. No, K. T. Chong, and D. H. Roh, “A Lyapunov function approach to longitudinal control of vehicles in a platoon,” IEEE Trans. Veh. Technol., vol. 50, no. 1, pp. 116-124, 2001. [36]J. T. Spooner and K. M. Passino, “ Stable adaptive control using fuzzy systems and neural networks,” IEEE Trans. Fuzzy Systems, vol. 4, no. 3, pp. 339-359, 1996. [37]D. Swaroop, J. K. Hedrick, and S. B. Choi, “Direct adaptive longitudinal control of vehicle platoons,” IEEE Trans. Veh. Technol., vol. 50, no. 1, pp. 150-161, 2001. [38]G. D. Lee and S. W. Kim, “A longitudinal control system for a platoon of vehicles using a fuzzy-sliding mode algorithm,” Mechatronics, vol. 12, no. 1, pp. 97-118, 2002. [39]S. Sheikholeslam and C. A. Desoer, “A system level study of the longitudinal control of a platoon of vehicles,” Trans. ASME, J. Dyn. Syst. Meas. Control, vol. 114, no. 2, pp. 286-292, 1992. [40]T. Fujioka and K. Suzuki, “Control of longitudinal and lateral platoon using sliding control,” Veh. Syst. Dynamics, vol. 23, no. 2, pp. 647-664, 1994. [41]T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993. [42]N. W. Hagood and A. J. Mcfarland, “Modeling of a piezoelectric rotary ultrasonic motor,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, no. 2, pp. 210-224, 1995. [43]S. He, W. Chen, X. Tao, and Z. Chen, “Standing wave bi-directional linearly moving ultrasonic motor,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, no. 5, pp. 1133-1139, 1998. [44]K. K. Tan, T. H. Lee and H. X. Zhou, “Micro-positioning of linear-piezoelectric motors based on a learning nonlinear PID controller,” IEEE/ASME Trans. Mechatorn., vol. 6, no. 4, pp. 428-436, 2001. [45]J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991. [46]J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: A survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2-22, 1993. [47]R. J. Wai and F. J. Lin, “Fuzzy neural network sliding-model position controller for induction servo motor driver,” Proc. IEE, Electr. Power Appl., vol. 146, no. 3, pp. 297-308, 1999. [48]C. H. Tsai, H. Y. Chung, and F. M. Yu, “Neuro-sliding mode control with its applications to seesaw systems,” IEEE Trans. Neural Networks, vol. 15, no. 1, pp. 124-134, 2004. [49]F. Da, “Decentralized sliding mode adaptive controller design based on fuzzy neural networks for interconnected uncertain nonlinear systems,” IEEE Trans. Neural Networks, vol. 11, no. 6, pp. 1471-1480, 2000. [50]C. M. Lin and C. F. Hsu, “Guidance laws design by adaptive fuzzy sliding-mode control,” J. Guid. Control Dyn., vol. 25, no. 2, pp. 248-256, 2002. [51]C. M. Lin and C. F. Hsu, “Self-learning fuzzy sliding-mode control for antilock braking systems,” IEEE Trans. Contr. Syst. Technol., vol. 11, no. 2, pp. 273-278, 2003. [52]Y. C. Chang, “Robust control for a class of uncertain nonlinear time-varying systems and its application,” Proc. IEE, Contr. Theory Appl., vol. 151, no. 5, pp. 601-609, 2004. [53]Y. C. Chang and H. M. Yen, “Adaptive output feedback tracking control for a class of uncertain nonlinear systems using neural networks,” IEEE Trans. Syst., Man, Cybern. B, vol. 35, no. 6, pp. 1311-1316, 2005. [54]A. Hamzaoui, N. Essounbouli, K. Benmahammed, and J. Zaytoon, “State observer based robust adaptive fuzzy controller for nonlinear uncertain and perturbed systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 2, pp. 942-950, 2004. [55]Y. C. Chang, “A robust tracking control for chaotic Chua’s circuits via fuzzy approach,” IEEE Trans. Circuits Syst. I, vol. 48, no. 7, pp. 889-895, 2001. [56]H. X. Li and S. Tong, “A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems,” IEEE Trans. Fuzzy Systems, vol. 11, no. 1, pp. 24-34, 2003. [57]L. Salim, S. B. Mohamed, and M. G. Thierry, “Adaptive fuzzy control of a class of MIMO nonlinear systems,” Fuzzy Sets Syst., vol. 151, no. 1, pp. 59-77, 2005. [58]S. Tong, B. Chen, and Y. Wang, “Fuzzy adaptive output feedback control for MIMO nonlinear systems,” Fuzzy Sets Syst., vol. 156, no. 2, pp. 285-299, 2005. [59]A. T. Vemuri and M. M. Polycarpou, “Neural-network-based robust fault diagnosis in robotic systems,” IEEE Trans. Neural Networks, vol. 8, no. 6, pp. 1410-1420, 1997. [60]Q. Song, W. J. Hu, L. Yin, and Y. C. Soh, “Robust adaptive dead zone technology for fault-tolerant control of robot manipulators using neural networks,” J. Intell. Robot. Syst., vol. 33, no. 2, pp. 113-137, 2002. [61]Q. Song and L. Yin, “Robust adaptive fault accommodation for a robot system using a radial basis function neural network,” Int. J. Syst. Sci., vol. 32, no. 2, pp. 195-204, 2001. [62]B. Blanke et al., “Fault-tolerant control systems–A history review,” Control Eng. Pract., vol. 5, no. 5, pp. 693-702, 1997. [63]A. T. Vemuri, M. M. Polycarpou, and S. A. Diakourtis, “Neural network based fault detection in robotic manipulators,” IEEE Trans. Robot. Automat., vol. 14, no. 2, pp. 342-348, 1998. [64]A. B. Trunov and M. M. Polycarpou, “Automated fault diagnosis in nonlinear multivariable systems using a learning methodology,” IEEE Trans. Neural Networks, vol. 11, no. 1, pp. 91-101, 2000. [65]Z. Liu and C. Li, “Fuzzy neural networks quadratic stabilization output feedback control for biped robots via approach,” IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 1, pp. 67-84, 2003.
|