(3.238.88.35) 您好!臺灣時間:2021/04/19 02:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:官峰輝
研究生(外文):Feng-Hui Kuan
論文名稱:薄型金屬雙極板PEMFC單電池製作與測試
論文名稱(外文):Prototyping and Performance Testing of Thin Metallic FEM Fuel Cells
指導教授:李碩仁李碩仁引用關係
指導教授(外文):Shuo-Jen Lee
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:81
中文關鍵詞:微電化學加工法燃料電池模擬
外文關鍵詞:Micro-ECMfuel cellanalysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池是一種新的能源技術,目前各國正積極展開相關研究工作。為了發展更經濟的質子交換型燃料電池,本研究將焦點著重於流場板的製造;為了克服石墨材料成本高、物理性質較差與加工困難…等特性,本研究採用不鏽鋼作為流場板材料。利用自製的微電化學加工機台,且使用加工速度快、製造成本低的微電化學加工法進行質子交換膜燃料電池微型流場板的加工;並取得試用於量產化的實驗流程與參數。
自製加工機台可分陰極進給裝置、陰陽極夾治具、電源供應系統、電解液噴流、過濾裝置與抗腐蝕鋼骨加工基台等五大部分。本研究使用微電化學方法進行金屬複雜曲面微細加工,討論各部份注意事項與設計重點;並運用CAE工具,對加工基台強度、加工區域流場以及加工電場分別進行模擬分析,取得日後陰極刀具與加工區域流場的設計要點。
運用自製微電化學加工機台於厚度600μm的不鏽鋼薄板,製作出流道深200μm、寬500μm的質子交換膜燃料電池微型流場板。將流場板進行表面電解拋光處理,降低表面阻抗與增加表面平整度。用流場板、MEA、GDL等部件逐一進行電池組裝,在性能測試中對陽極端氣體加濕以維持MEA溼度。由電池測試結果來調整加工參數之需求,並將此微電化學加工方法設計量產製程。
Fuel cell is the focal point of renewable energy research. In order to reduce the fabrication cost of metallic bipolar plates, the micro-ECM process is developed for efficient and effective fabrication of stainless steel bipolar plates.

In this study, a prototype of micro-ECM system is developed which includes cathode feeding mechanism, fixture of electrodes, power supply, electrolyte pumping and filtration, and platform. The platform is analyzed with FEM method to ensure its rigidity. The CFD analysis was performed to ensure the smooth flow of electrolyte inside the fixture channel. Electric field analysis of the electrodes was also conducted in order to provide the effect of process parameters on machining accuracy.

Micro-ECM experiments were conducted on 600 um thick stainless steel plates to obtain flow channels of 200 um deep and 500 um wide. The bipolar plates were electropolished to improve corrosion resistance property. A single cell was assembled to perform cell tests with various operational parameters such as temperature and humidity. Cell performance of 0.25 W/cm2 at 0.35 V was obtained.
目錄
書名頁......................................................................................I
論文口試委員審定書................................................................III
授權書....................................................................................IV
中文摘要..................................................................................V
英文摘要.................................................................................VI
誌謝.......................................................................................VII
目錄.....................................................................................VIII
表目錄....................................................................................XI
圖目錄...................................................................................XII
第1章 緒論 1
1.1 研究背景與目的 1
1.2 研究目標 3
1.3 文獻回顧 4
1.4 論文架構 7
第2章 研究理論與實驗方法 9
2.1 微電化學加工原理介紹 9
2.2 電化學加工影響因素 11
2.2.1 平衡間隙 12
2.2.2 電解液 13
2.2.3 電解液流場 14
2.3 質子交換膜燃料電池基本構造與原理 16
2.3.1 燃料電池之分類 16
2.3.2 質子交換膜燃料電池之構造與基本原理 18
2.4 實驗方法與流程 21
第3章 微電化學加工設備與分析模擬 23
3.1 微電化學加工機台 23
3.1.1 加工機台設計要點 23
3.2 模擬分析 31
3.2.1 加工基台強度分析 31
3.2.2 電場模擬 38
3.2.3 夾治具與加工區域流場模擬 42
第4章 電化學加工與成品量測 47
4.1 微電化學加工方法 47
4.1.1 微電化學加工參數 47
4.1.2 微電化學加工實驗 53
4.2 加工成品量測 60
4.2.1 流道寬度與表面品質 60
4.2.2 流道深度 61
4.2.3 成品量測 62
第5章 電池組裝與性能測試 65
5.1 電池基本組成元素 65
5.2 研究方法 69
第6章 結論與未來展望 75
6.1 結論 75
6.2 未來展望 76
參考文獻 78
[1]朱樹敏,“電化學加工(ECM)及相關特種加工工藝技術,電化學加工(ECM)及相關特種加工工藝技術研討會”,台大慶齡工業研究中心(1997).
[2]朱樹敏,“電化學加工技術”,北京化學工業出版社(2006).
[3]B. Bhattacharyya & J. Munda, “Experimental Investigation on the Influent of Electrochemical Machining Parameters on Machining Rate and Accuracy in Micromachining Domain,”International Journal of Machine Tool & Manufacture, Vol. 43, pp. 1301-1310 (2003).
[4]J. Hopenfeld and R.R. Cole, “Electrochemical Machining–Prediction and Correlation of Process Variables,” Journal of Engineering for Industry, pp. 455-461, November (1966).
[5]M. Kock, V. Kirchner, R. Schuster, “ Electrochemical Micromachining with Ultrashort Voltage Pulses-a Versatile Method with Lithographical Precision,” Electrochimica Acta, Vol. 48, pp. 3213-3219 (2003).
[6]Y. Chengye and Z.X. Liu, “Pulse Electrochemical Machining,” Nanjing Aeronautical Institute, pp. 74-99, May (1988).
[7]Viola Kirchner & Philippe Allongue, “Electrochemical Micro- Machining,” Accounts of Chemical Research, Vol. 34, No.5, pp. 371-377 (2001).
[8]V.K. Jain, Vinod Kuman Jain and P.C. Pandey, “Corner Reproduction Accuracy in Electro-Chemical Drilling (ECD) of Blind Holes,” Journal of Engineering for Industry, Vol. 106, pp. 55-62, (1984).
[9]Y. Li, Y. Zheng, G. Yang and L. Q. Peng , “Localized Electrochemical Micromachining with Gap Control,” Sensors and Actuators, A 108, pp. 144-148(2003).
[10]H. Hocheng, Y.H. Sun, S.C. Lin and P.S. Kao, “A Material Removal Analysis of Electrochemical Machining Using Flat-end cathode,” Journal of Material Processing Technology, Vol. 140, pp. 264-268, (2003).
[11]R. Rokicki, “Electropolishing of high nickel alloys, Metal Finishing,” pp. 103-104, June 1993.
[12]H. Hocheng, P.S. Pa, “Electropolishing and electrobrightening of holes using different feeding electrodes,” Journal of Materials Processing Technology, Vol. 89-90, pp. 440-446, (1999).
[13]S.S. Hsieh, J.K. Kuo, C.F. Hwang, H.H. Tsai, “A Novel Design and Microfabrication for a Micro PEMFC,” Microsystem Technology Vol. 10, pp. 121-126 (2004).
[14]S. Ganburzev and A. Appleby, “Development of Low-cost, Light-weight Construction Material for Gas Flow Fields and Bipolar Plates is a Major Hurdle for the Broad Commercialization of PEMFCs,” J. Power Sources, Vol. 107, pp. 5-12 (2002).
[15]J. Ihonen, F. Jaouen, G. Linderbergh, G. Sundholm, “A novel Polymer Electrolyte Fuel Cell for Laboratory Investigations and In-situ Contact Resistance Measurements,” Electrochemical Acta, pp. 2899-2911, (2001).
[16]W.M. Yan, C.Y. Soong, F.L. Chen, and H.S. Chu, “Effects of Flow Distributor Geometry and Diffusion Layer Porosity on Reactant Gas Transport and Performance of Proton Exchange Membrane Fuel Cells,” J. Power Sources, Vol. 125, pp. 27-39 (2003).
[17]J. Wind, R. Spah, W. Kaiser, G. Bohm, “Metallic bipolar plates for PEM fuel cells,” J. Power Sources, Vol. 105, 256-260, (2002).
[18]A. Kumar and R.G. Reddy “Effect of channel dimensions and shape in the floe-field distributor on the performance of polymer electrolyte fuel cells,” J. Power Sources, Vol. 113, pp. 11-18 (2003).
[19]A.S. Arico, P. Creti, V. Baglio, E. Modica, and V. Antonucci, “Influence of flow dield design on the performance of a direct methanol fuel cell,” J. Power Sources, Vol. 91, pp. 202-209 (2000).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔