(3.234.221.162) 您好!臺灣時間:2021/04/14 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡偉翔
研究生(外文):Wei-Hsiang Chien
論文名稱:高溫型質子交換膜燃料電池性能與活化效應探討
論文名稱(外文):Performance and Activation Investigation of High Temperature Proton Exchange Membrane Fuel Cell
指導教授:蘇艾蘇艾引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:84
中文關鍵詞:高溫型質子交換膜燃料電池活化性能衰退
外文關鍵詞:PEMFChigh temperature PEMFCactivationperformance degradation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1039
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
一般而言,「水」在低溫質子交換膜燃料電池中扮演的影響性能好壞以及穩定之重要角色,高溫型質子交換模燃料電池由於在操作過程中,液態水大致已成氣態,因此其對性能之影響層面上將有所不同,積水之影響大幅的降低,且性能不因乾燥氣體之使用而低落,故高溫環境下的操作,將可大幅減低水熱管理,未來更可直接搭配重組器使用。
高溫型質子交換膜燃料電池在特定的溫度及電流負載下,有近似低溫的活化情況發生。因此,本研究將高溫型質子交換膜燃料電池活化操作分成兩部份進行分析討論:(1)活化時間方面,使用不同程度之電流負載如0.1、0.2、0.4以及0.8A/cm2進行長時間定電流放電,而小電流負載操作雖活化時間較長,但可有較完整之活化,因此以時間及性能為考量之前提下,0.4 A/cm2為最佳操作參數;(2)深層活化部份,先以小電流0.01 A/cm2活化50小時再以0.2及0.4 A/cm2各自操作10小時,如此操作可使性能再提升10%。
另外在研究中長時間操作所出現之性能衰退現象,經SEM以及TEM之檢測結果可研判衰退現象與膜材缺損和觸媒聚集相關,此兩項因素將導致導電度以及觸媒反應面積降低。
General speaking, liquid water acts the important role about fuel cell performance and stability. Due to the most of liquid water will be vapor in the process of operating High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC), therefore the performance is different of LT-PEMFC. Effect of flooding and membrane drying will greatly reduce. Performance using dried fuel will be better than low temperature.
After some specific procedure of activation operation, performance of low temperature proton exchange membrane fuel cell (LT-PEMFC) will be promoted and stable. High temperature proton exchange membrane fuel cell (HT-PEMFC) at some specific procedure such as some temperature and current load operate for a period of time, the performance will occurred some situation like low temperature. By this way, we can activate MEA of HT-PEMFC with different parameter to observe influence of activation results. Activation of HT-PEMFC was discussed with two parts:(1) At the part of activation time, operating at a long time with constant current which current load was different current density such as 0.2, 0.4 and 0.8 A/cm2. Operation time of little current load was longer than larger, but the activation was more completely and the performance was better than larger ; (2) At the part of profound activation, after continue 50 hours operating with little current density 0.1 A/cm2, change current density to 0.2 and 0.4 A/cm2 for 10 hours. The performance enhances 10% at 0.5V.
Furthermore, SEM and TEM results indicate that membrane damage and catalyst particle account performance degradation.
目 錄
書名頁 ......................................................................................... .................... i
中文摘要…………………...……………………………………...…………..ii
英文摘要...........................................................................................................iii
誌謝………………………………………………….……………………......iv
目錄…………………………...……………………………………….............v
表目錄…………………………...………………………………………......viii
圖目錄……………………………...……………………………………........ix
一、研究背景與目的………………………………………………….……....1
1-1 研究背景.............................................................................................1
1-2 文獻回顧……………………………………………...…………......2
1-3 研究目的…………………………………………………….....…...10
二、儀器與研究方法…………………………………………………..……..12
2-1電池基本組成.....................................................................................12
2-1-1 燃料電池基本元件………………………………………….12
2-1-2 石墨流場板……………………………………………….....13
2-1-3膜電極阻…………………………………………...………...14
2-2 電池實體製作過程………………………...……………………….14
2-3 燃料電池性能量測平臺……………………………………...…….14
2-4 燃料電池性能與放電性量測方法………………………………....15
2-5實驗目的與步驟………………………………………………….....16
2-5-1氣體防漏材料測試……………………………………...…...17
2-5-2電池絕緣材料測試………………………………………......17
2-5-3複合石墨板測試…………………………………………..…17
2-5-4長時間定電流實驗……………………………………….….18
2-5-5不同電流密度之長時間定電流實驗………………...…..… 19
2-5-6不同電流密度撘配之長時間操作活化實驗……………......20
2-5-7溫度效應之影響…………………………………………..…21
2-5-8流量之影響……………………………………………….….22
2-5-9相對溼度之影響……………………………………………..24
2-5-10背壓對性能之影響………..………………………………..25
2-5-11 MEA衰退性應探討………………………………………..26
2-5-12 觸媒及模材分析……………………………………...……28
2-6 相對溼度之換算…………………………………………………....28
2-7燃料流率之換算………………………………………………….....29
2-8顯微攝影以及成份分析……………………………………….……30
2-8-1穿透式電子顯微鏡(TEM)……………………………...……30
2-8-2掃描式電子顯微鏡(SEM)……………………………...……30
2-8-3 X光能譜散佈分析儀(EDS)………………………………....31
三、結果與討論……………………………………...………………………..32
3-1高溫型質子交換膜燃料電池之設計…………………………....….32
3-1-1氣體防漏材料測試……………………………………...…...33
3-1-2電池絕緣材料測試……...…………………………………...34
3-1-3複合石墨板測試……………………………………...……...35
3-1-4自製電池性能測試………………………………………......35
3-2高溫型質子交換膜燃料電池搭配PBI/H3PO4膜材前處理實驗…...36
3-2-1長時間定電流實驗……………………………………...… 36
3-2-2不同電流密度之長時間定電流實驗……………………....38
3-2-3不同電流密度撘配組合之活化實驗……………………....40
3-3高溫型質子交換膜燃料電池搭配PBI/H3PO4膜材之性能量測...…42
3-3-1溫度效應之影響……………………..……………………..42
3-3-2 流量之影響……………………………………………...…43
3-3-3相對溼度之影響……………………………………………45
3-3-4背壓對性能之影響…………………………………………46
3-4 MEA衰退效應探討…………………………………………...…...47
3-4-1磷酸析出實驗……………………………………………....48
3-4-2觸媒及模材分析…………………………………..………..49
四、結論.............................................................................................................52
五、參考文獻………………………………………………………………….55
















表目錄
表2.1 Assembly instruction for Pemeas High Temperature Celtec®-P Series 1000 MEAs 規格簡介………………………………………………..59
表2.2元智自製高溫質子交換膜燃料電池規格簡介…………………….....59
表2.3 CHINO FC5100 參數細節及操作上限………………………………59
表2.4 氟橡膠材質之熱性質…………………………………………………60
表2.5長時間定電流實驗參數……………………………………………….60
表2.6不同電流密度之長時間定電流實驗………………………………….60
表2.7不同電流密度之長時間定電流實驗………………………………….61
表2.8 溫度效應實驗參數……………………………………………………61
表2.9 陽極流量實驗參數……………………………………………………61
表2.10 陰極流量實驗參數…………………………………………………..62
表2.11 相對溼度之影響實驗參數…………………………………………..62
表2.12 背壓之影響實驗參數……………………………………..…………62
表2.13 MEA衰退性應探討…………………….………………….………...63
表3.1 不同定電流活化性能差異…………………………………..………..63
表3.2 定電流活化過程冷凝水PH值…………………...…………..……….63







圖 目 錄

圖2.1 (a) Assembly instruction for Pemeas High Temperature Celtec®-P Series 1000 MEAs 陽極流道板,兩蛇蛇型流道…..64
圖2.1 (b) Assembly instruction for Pemeas High Temperature
Celtec®-P Series 1000 MEAs 陰極流道板,三蛇蛇型流道......64
圖2.2 商購MEA PEMEAS Celtec®-P Series 1000 MEA………………….65
圖2.3 自製高溫PEMFC…………………………………….……………...65
圖2.4 CHINO機台實驗裝置配置示意圖………………………………….66
圖2.5 CHINO機台流程編寫程式…………………………………………66
圖2.6 CHINO公司FC5100機台………………………………………….67
圖2.7 實驗流程圖…………………………………………………………..68
圖2.8 SEM之基本構造圖………………………………………………….69
圖2.9 X射線能量散佈分析儀的結構示意圖……………………………..69
圖2.10 冷凝水蒐集系統……………………………………………………..70
圖3.1 熱壓前鐵氟龍料片尺寸為7cm*7cm*0.3mm………………………71
圖3.2 熱壓後鐵氟龍料片尺寸為7cm*7cm*0.03mm……………………..71
圖3.3 (a) 進行熱壓測試前之O-ring A……………………………………...71
圖3.3 (b) 進行熱壓測試後之O-ring A……………………………………...71
圖3.4 (a) 將O-ring B電池外殼中…………………………………………..71
圖3.4 (b) 經過模擬實驗測試後之O-ring…………………………….……..71
圖3.5 (a) 高溫PEMFC電池之螺絲部份結構簡圖…………………………72
圖3.5 (b) 高溫PEMFC電池之螺絲絕緣元件………………………………72
圖3.6 (a) 測試前的鐵氟龍管,尺寸為長3.5cm、內徑0.25英吋…………72
圖3.6 (b) 測試後的鐵氟龍管,尺寸維持長3.5cm、內徑0.25英吋…………72
圖3.7 (a) 經過加熱測試後的鐵氟料片……………………………………..72
圖3.7(b) 經過加熱測試後的玻璃纖維料片………………………………...72
圖3.8 三種不同複合石墨之測試用料片,由左至右分別為BBP4、BMA5
以及GRADE FU 4369………………………………………………..73
圖3.9 複合石墨料片分別在120、150、180℃三溫度點下進行加熱後所量
測之阻抗值…………………………………………………………...73
圖3.10 自製電池與商購電池性能比較…………………………………….74
圖3.11 定電流0.2、0.8以及1.1 A/cm2及經十天靜置後重新啟動之連續長時間電壓值變化圖………………………………………………...74
圖3.12 活化完成後經50A定電流放電後性能開始出現衰退…………….75
圖3.13 不同定電流長時間操作之電壓趨勢圖……………………………..75
圖3.14 不同定電流50小時活化後性能比較………………………………76
圖3.15 階段性活化對應電壓趨勢圖………………………………………..76
圖3.16 電流由小至大之階段性活化與定電流活化後性能比較………….77
圖3.17 不同階段性活化後性能比較……………………………………….77
圖3.18 商購50cm2電池在140、160以及180℃之極化曲線圖…………78
圖3.19 固定陰極端流量改變陽極端流量,圖中數字為陽極端流量當量比,長條圖區塊表電壓值變化區間…………………………………….78
圖3.20 固定陽極端流量改變陰極端流量,圖中數字為陰極端流量當量比,
長條圖區塊表電壓值變化區間…………………………………….79
圖3.21 燃料及氧化劑加濕極化曲線圖,相對溼度分別為0%、5%、10%以
及20%.................................................................................................79
圖3.22 經過R.H.10%以及20%加濕實驗後,重新以乾燥氣體量測之極化
曲線圖……………………………………………………………….80
圖3.23 背壓操作性能圖…………………………………………………….80
圖3.24 定電流活化過程中每10小時冷凝水之PH值……………………..81
圖3.25 MEA去除磷酸前後性能差異……………………………………….81
圖3.26 定電流0.2 A/cm2 MEA SEM攝影(100倍)…………………………82
圖3.27 定電流0.2 A/cm2 MEA SEM攝影(1000倍)……………………….82
圖3.28 定電流0.4 A/cm2 MEA SEM攝影(100倍)…………………………83
圖3.29 定電流0.4 A/cm2 MEA SEM攝影(500倍)…………………………83
圖3.30 定電流0.8 A/cm2 MEA SEM攝影(100倍)………………………….84
圖3.31 定電流0.8 A/cm2 MEA SEM攝影(500倍)…………………….........84
圖3.32 定電流0.2 A/cm2 ANODE端 MEA TEM攝影(70K倍)…………...85
圖3.33 定電流0.2 A/cm2 CATHODE端 MEA TEM攝影(70K倍)………...85
圖3.34 定電流0.4 A/cm2 ANODE端 MEA TEM攝影(70K倍)…………...86
圖3.35 定電流0.4 A/cm2 CATHODE端 MEA TEM攝影(70K倍)……...…86
圖3.36 定電流0.8 A/cm2 ANODE端 MEA TEM攝影(70K倍)………...…87
圖3.37 定電流0.8 A/cm2 CATHODE端 MEA TEM攝影(70K倍)………...87
圖3.38 定電流0.2 A/cm2 CATHODE端 MEA TEM攝影(100K倍)……….88
圖3.39 定電流0.8 A/cm2 CATHODE端 MEA TEM攝影(100K倍)……….88
參考文獻

[1] Q.F.Li, R.H.He, J.O.Jensen, N.J.Bjerrum, Approaches and Recent Development of Polymer, Chem. Mater. 15 (2003) 4896-4915.

[2] A.Parthasarathy, S.Srinivasan, A.J.Appleby, C.R.Martin, Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nation |Interface--A Microelectrode Investigation, J. Electrochem. Soc. 139 (1992) 2530-2537.

[3] Q.F.Li, R.H.He, J.O.Jensen, N.J.Bjerrum, The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C, J. Electrochem. Soc.150 (2003) A1599-A1605.

[4] K.Lee, A.Ishihara, S.Mitsushima, N.Kamiya, Effect of Recast Temperature on Diffusion and Dissolution of Oxygen and Morphological Properties in Recast Nafion, J. Electrochem. Soc.151 (2004) A639-A645.

[5] M.S.Wilson, F.H.Garzon, K.E.Sickafus, S.Gottesfeld, Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc.140 (1993) 2872-2877.

[6] J.A.Asensio, S.Borros, P.Gomez-Romero, Proton-conducting membranes based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting, J. Membr. Sci. 241 (2004) 89-93.

[7] R.H.He, Q.F.Li, G.Xiao, N.J.Bjerrum, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, J. Membr. Sci. 226 (2004) 169-184.

[8] T.J.P.Freire, E.R.Gonzalez, Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells, J.Electronal. Chem. 503 (2001) 57-68.

[9] J.-D.Kim, Y.I.Park, K.Kobayashi. M.Nagai, M.Kunimatsu, Characterization of CO tolerance of PEMFC by ac impedance spectroscopy, Solid State Ionics 140 (2001) 313-325.

[10] N.H.Jalani, M.Ramani, K.Ohlsson, S.Buelte, G.Pacifico, R.Pollard, R.Staudt, R.Datta, Performance analysis and impedance spectral signatures of high temperature PBI–phosphoric acid gel membrane fuel cells, Journal of Power Sources 160 (2006) 1096–1103.

[11] J.W.Hu, H.M.Zhang, Y.F.Zhai, G.Liu, B.L.Yi, 500h Continuous agimg life test on PBI/H3PO4 high-temperature PEMFC, International Journal of Hydrogen Energy 31 (2006) 1855-1862.

[12] G.Liu, H.M.Zhang, J.W.Hu, Y.F.Zhai, D.Y.Xu, Z.-G.Shao, 500 h Continuous aging life test on PBI/H3PO4 high-temperature PEMFC, International Journal of Hydrogen Energy 31 (2006) 1855 – 1862.

[13] Z.G.Qi, A.Kaufman, Activation of low temperature PEM fuel cells, Journal of Power Sources 111 (2002) 181-184.

[14] Z.G.Qi, A.Kaufman, Quick and effective actvation of proton-exchange membrane fuel cells, Journal of Power Sources 114 (2003) 21-31.

[15] F.B.Weng, A.Su, C.Y.Hsu, C.Y.Lee, Study of water-flooding behaviour in cathode channel of a transparent proton-exchange membrane fuel cell, Journal of Power Sources 157 (2006) 674–680.

[16] Z.Q.Xu, Z.G.Qi, C.Z.He, A.Kaufman, Combined activation methods for proton-exchange membrane fuel cells, Journal of Power Sources 156 (2006) 315-320.

[17] J.Hu, H.Zhang, Y.Zhai, G.Liu, J.Hu, B.Yi, Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis, Electrochimica Acta 52 (2006) 394-401.

[18] Y.Zhai, H.Zhang, D.Xing, Z.G.Shao, The stability of Pt/C catalyst in PBI/H3PO4 PEMFC during high temperature life test, Journal of Power Sources 164 (2007) 126-133.

[19] J.Lobato, P.Cañizares, M.A.Rodrigo, J.J.Linares, PBI-based polymer electrolyte membrane fuel cells Temperature effects on performance and catalyst stability, Electrochimica Acta 52 (2007) 3910-3920.

[20] Y.Zhai, H.Zhang, Y.Zhang, D.Xing, A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells, Journal of Power Sources 169 (2007) 259-264.

[21] H.L.Lin, T.L.Yu, W.K. Chang, C.P.Cheng, C.R.Hu, G.B.Jung, Preparation of a low proton resistance PBI/PTFE composite membrane, Journal of Power Sources 164 (2007) 481-487.

[22] J.Hu, H,Zhang, J.Hu, Y.Zhai, B.Yi, Two dimensional modeling study of PBI/H3PO4 high temperature PEMFCs based on electrochemical methods, Journal of Power Sources 160 (2006) 1026-1034.

[23] D.F.Cheddie, N.D.H.Munroe, Three dimensional modeling of high temperature PEM fuel cells, Journal of Power Sources 160 (2006) 215-223.

[24] http://elearning.stut.edu.tw/caster/3/no3/3-2.htm

[25] http://elearning.stut.edu.tw/caster/3/no5/5-1.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔