參考文獻
1.台灣二十一世紀議程國家永續發展願景與策略綱領,行政院經濟建設委員會,民國九十三年。
2.C. Y. Huang, C. H. Lin, “Experimental Studies of the Performance of a Small Reformer for Hydrogen Generation,” The 4th International Conference on Fuel Cell Science Engineering and Technology, Irvine, CA (2006).
3.F. Guazzone, E. E. Engwall, Y. H. Ma, “Effects of surface activity, defects and mass transfer on hydrogen permeance and n-value in composite palladium-porous stainless steel membranes,” Catalysis Today 118, pp. 24-31 (2006).
4.G. Chen, S. Li, Q. Yuan, “Pd-Zn/Cu-Zn-Al catalysts prepared for methanol oxidation reforming in microchannel reactors,” Catalysis Today 120, pp. 63-70 (2007).
5.S. K. Ryi, J. S. Park, S. H. Cho, S. H. Kim, “Fast start-up of microchannel fuel processor integrated with an igniter for hydrogen combustion,” Journal of Power Source 161, pp. 1234-1240 (2006).
6.D. E. Park, T. K. Kim, “Micromachined methanol steam reforming system integrated with catalytic combustor using carbon nanotubes as catalyst supports,” The 4th International Conference on Fuel Cell Science Engineering and Technology, Irvine, CA (2006).
7.K. A. Adamson, P. Pearson, “Hydrogen and methanol: a comparison of safety, economics, efficiencies and emissions,” Journal of Power Source 86, pp.548-555 (2000).
8.L. F. Brown, “A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles,” International Journal of Hydrogen Energy 26, pp. 381-397 (2001).
9.宋隆裕,燃料電池用甲醇重組器之測試研究,能源季刊第二十四卷第一期,pp. 69-88,中華民國八十三年。10. Y. M. Lin, M. H. Rei, “Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor,” Catalysis Today 67, pp. 77-84 (2001).
11.J. Han, I. S. Kim, K. S. Choi, “Purifier-integrated methanol reformer for fuel cell vehicles,” Journal of Power Source 86, pp. 223-227 (2000).
12.R. Kumar, S. Ahmed, M. Krumpelt, “Rapid-start reformer for methanol in fuel-cell vehicles,” Electric & Hybrid Vehicle Technology 96, pp. 123-127 (1996).
13.J. Han, I. S. Kim, K. S. Choi, “High purity hydrogen generator foron-site hydrogen production,” International Journal of Hydrogen Energy 27, pp. 1043-1047 (2002).
14.T. J. Huang, S. W. Wang, “Hydrogen production via partial oxidation of methanol over copper-zinc catalysts,” Applied Catalysis 24, pp. 287-297 (1986).
15.T. J. Huang, S.L. Chren, “Kinetics of partial oxidation of methanol over a copper—zinc catalyst,” Applied Catalysis 40, pp. 43-52 (1988).
16.陳泓政,燃料電池用之甲醇重組器氫氣產生研究,成功大學航空太空工程研究所碩士論文,中華民國九十一年。17.G. G. Park, D. J. Seo, S. H. Park, “Development of microchannel methanol steam reformer,” Chemical Engineering Journal 101, pp. 89-92 (2004).
18.G. G. Park, S. D. Yim, Y. G. Yoon, “Hydrogen production with integrated microchannel fuel processor for portable fuel cell systems,” Journal of Power Sources 145, pp. 702-706 (2005).
19.X. Yu, S. T. Tu, Z. Wang, “On-board production of hydrogen for fuel cells over Cu/ZnO/Al2O3 catalyst coating in a micro-channel reactor,” Journal of Power Sources 150, pp. 57-66 (2005).
20.S. Y. Ye, S. Tanaka, “Thin palladium membrane microreactor with porous silicon support and their application in hydrogenation reaction,” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea (2005).
21.Y. Kawamura, N. Ogura, T. Yamamoto, “A miniaturized methanol reformer with Si-based microreactor for a small PEMFC,” Chemical Engineering Science 61, pp. 1092-1101 (2006).
22.O. J. Kwon, S. M. Hwang, J. G. Ahn, “Silicon-based miniaturized-reformer for portable fuel cell applications,” Journal of Power Sources 156, pp. 253-259 (2006).
23.楊賢政,白金薄膜感測器應用於微流道的現地溫度量測,淡江大學機電工程研究所碩士論文,中華民國八十九年。24.L. Jiang, M. Wong, Y. Zohar, “A Micro-Channel Heat Sink with Integrated Temperature Sensors for Phase Transition Study,” IEEE., pp. 159-164 (1999).
25.L. Jiang, M. Wong, Y. Zohar, “Phase Change in Microchannel Heat Sink with Integrated Temperature Sensors,” Journal of microelectromechanical systems 8, pp. 358-365 (1999).
26.L. Jiang, M. Wong, Y. Zohar, “Transient temperature performance of an integrated micro-thermal system,” J. Micromech. Microeng 10, pp. 466-476 (2000).
27.L. Jiang, M. Wong, Y. Zohar, “Forced Convection Boiling in a Microchannel Heat Sink,” IEEE., pp. 80-87 (2001).
28.楊文瑞,流道現地溫度量測晶片之改良製作,淡江大學機電工程研究所碩士論文,中華民國九十年。29.H. R. Chen, “Design and fabrication of the microchannel system for thermal fluid study,” Ph.D. Thesis, National Cheng Kung University, Republic of China, ( 2001).
30.C. H. Shen, C. Gau, “Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements,” Biosensors and Bioelectronics, pp. 315-320 (2004).
31.P. Bruschi, A. Diligenti, D. Navarrini, M. Piotto, “A double heater integrated gas flow sensor with thermal feedback,” Sensors and Actuators A 123-124, pp. 210-215 (2005).
32.C. Y. Shih, Y. Chen, W. Li, J. Xie, Q. He, Y. C. Tai, “An integrated system for on–chip temperature gradient interaction chromatography,” Sensors and Actuators A 127, pp. 207-215 (2006).
33.陳柏台,陳哲宏,曹哲聖,微流道晶片溫度控制與測量,中國機械工程學會第二十三屆全國學術研討會論文集,中華民國九十五年。
34.林昇佃、李碩仁、翁芳柏、余子隆、張幼珍、林育才、吳和生、魏榮宗、林修正、賴子珍、曾盛恕、詹世弘,燃料電池:新世紀能源,滄海出版社,台中,民國九十三年。
35.L. T. Canham, “Silicon quantum wire array fabrication by electrochemical dissolution of wafers,” Applied Physics Letters 57, pp. 1046-1048 (1990).
36.S. M. Sze, “Semiconductor Sensors,” John Wiley & Sons, New York, pp. 357-358 (1994).
37.A. G. Kozlov, “Analytical modeling of temperature distribution in resistive thin-film thermal sensors,” International Journal of Thermal Sciences 45, pp.41-50 (2006).
38.鐘國家、謝勝治,感測器原理與應用實習,全華出版社,台北,民國八十五年。
39.黃青峯,微渠道之微加熱器及溫度感測器設計製作,國立中山大學機電所碩士論文,中華民國九十三年。
40.J. E. Hunt, R. E. Winans, L. Xu, “Mwashcoat with zirconia-sol and catalyst mixtures for autothermal reforming of methanol in a micro-channel reactor,” Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 52, (2007), in press.