(100.26.179.251) 您好!臺灣時間:2021/04/21 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳姿穎
研究生(外文):Tzu-Ying Wu
論文名稱:低溫製程與雷射退火處理IZO透明導電薄膜光電與微觀特性研究
論文名稱(外文):Studies of Electrical, Optical Properties and Microstructures of Indium Zinc Oxide Thin Films and Its Laser Annealing Process
指導教授:邱傳聖邱傳聖引用關係
指導教授(外文):Chuan-Sheng Chiou
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:103
中文關鍵詞:透明導電薄膜銦鋅氧化物雷射退火
外文關鍵詞:TCOIZOlaser annealing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:357
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究討論在薄膜厚度、鍍膜氧分壓與基板溫度條件下以射頻磁控濺鍍方式成長IZO氧化物透明導電薄膜其光學、電性與微觀結構等特性變化,進一步再以低溫雷射退火處理,了解雷射退火製程參數對IZO薄膜其光電性質之影響。實驗結果顯示,隨著薄膜厚度增加將提升IZO薄膜結晶性並使得薄膜電阻率降低,而薄膜的表面粗糙度Rms約為0.4 nm。在改變鍍膜氧分壓條件中,純氬氣條件成長下,IZO薄膜載子濃度為1.4×10-20 cm-3,當氧分壓增加為3%,載子濃度減少為3.3×1016 cm-3。在SEM微觀分析中,隨著氧分壓提高,薄膜表面粗糙度增加,且產生一些微細顆粒。在改變基板溫度時,薄膜光學吸收限往短波長區移動,IZO薄膜電阻率在室溫條件至300℃區間,隨著溫度增加呈現降低趨勢,基板溫度高於400℃時,在SIMS觀察中發現薄膜表面銦原子含量降低,使IZO薄膜偏離化學劑量比,造成薄膜電阻率增加。在SEM微觀分析中,IZO薄膜晶粒尺寸隨著提高基板溫度而增加。TEM微觀影像觀察中顯示IZO薄膜在室溫鍍膜呈現奈米尺寸結晶,基板溫度增高為500℃時,IZO膜層頂端與底端呈現不同的結晶結構。在雷射退火實驗中發現,基板溫度為100℃與300雷射脈衝(shots),雷射能量為80 mJ/cm2時可得到最佳電阻率為8.2×10-4 Ω-cm,且此時薄膜表面平均粗糙度約為Rms = 0.5 nm。
Relationship among the optical, electrical properties and microstructures of transparent indium zinc oxide (IZO) films on the glass using rf. sputtering technique with a varying thickness, oxygen pressure and substrate temperature were discussed. A Nd-YAG laser was used to anneal IZO films deposited at room temperature. The experimental results showed the crystallinity of IZO films increases with increasing film thickness, as resulted in a decreasing of electrical resistivity. The surface roughness of IZO films is about of 0.3~0.4 nm regardless the film thickness. The highest electrical resistivity of 17.8 Ω-cm and lowest carrier concentration of 3.3×1016 /cm3, were obtained for the IZO films when the pressure of oxygen increases to 3%. The SEM micrographs exhibited the surface roughness of IZO film increases as the increasing of oxygen pressure. Optical absorption limit of thin films shift to the shorter wavelengths with increasing substrate temperature. The electrical resistivity of IZO films decrease with increasing substrate temperature under temperature of 300℃. The electrical resistivity of IZO films increase with decreasing Indium content of film surface when the substrate temperature higher then 400℃. The SEM micrographs exhibited the grain size increases as function of the substrate temperature. Cross-sectional TEM images implies that IZO films deposited at 500℃exhibited the upper layer of IZO films crystallized and films at the bottom layer remained amorphous. The properties of IZO films were investigated after laser annealing process. As a result of laser irradiation at 80 mJ/cm2 for 300 shots, the lowest electrical resistivity of IZO films is 8.2×10-4 Ω-cm, while the surface roughness is about 0.5 nm with the substrate temperature of 100℃.
書名頁 ii
審定書 iii
中文摘要 iv
英文摘要 v
誌謝 vi
目錄 vii
表目錄 viii
圖目錄 ix
第一章 前言 1
第二章 文獻回顧 4
2.1 透明導電薄膜 4
2.2 現今研究發展 5
2.2.1 透明導電薄膜發展 5
2.2.2 IZO薄膜製程發展 9
2.3 透明導電薄膜光電性質 11
2.4 濺鍍製程與薄膜之關係 19
2.5 雷射退火 24
2.5.1 雷射退火原理 24
2.5.2 雷射退火技術發展 30
2.5.3 Nd-YAG雷射簡介與應用 34
第三章 實驗方法 42
3.1 實驗設計 42
3.2 實驗流程 43
3.3 實驗材料 44
3.4 實驗設備 44
3.5 實驗參數 47
3.6 實驗儀器 48
第四章 結果與討論 56
4.1 薄膜厚度對IZO透明導電薄膜光電性質之影響 56
4.2 鍍膜氧分壓對IZO透明導電薄膜光電性質之影響 62
4.3 鍍膜基板溫度對IZO透明導電薄膜光電性質之影響 66
4.4 雷射退火製程參數對IZO透明導電薄膜光電性質之影響 77
第五章 結論 95
第六章 未來方向 97
參考文獻 98
[ ] 潘漢昌,蕭銘華,蘇健穎,蕭健男,「透明導電薄膜簡介」,科儀新知,第二十六卷第一期,47頁,民國九十五年。
[ ] T. Minami, T. Miyata and T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering, ” Surface and Coatings Technology, 108 (1998) 583.
[ ] A.S. Ryzhikov, R.B. Vasiliev, M.N. Rumyantseva, L.I. Ryabova, G.A. Dosovitsky, A.M. Gilmutdunov, V.F. Kozlovsky and A.M. Gaskov, “Microstructure and electrophysical properties of SnO2, ZnO and In2O3 nanocrystalline films prepared by reactive magnetron, ” Materials Science and Engineering, B96 (2002) 268.
[ ] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes, ” Semiconductor Science And Technology, 20 (2005) S35.
[ ] H. Nanto, T. Morita, H. Habara, K. Kondo, Y. Douguchi and T. Minami, “Doping effect of SnO2 on gas sensing characteristics of sputtered ZnO thin film chemical sensor, ” Sensors and Actuators B, 35 (1996) 384.
[ ] T. Minami, “New N-type transparent conducting oxides, ” Mirsbulletin, August 2000.
[ ] F. Karlsruhe and I. F. Festkorperphysik, “Single-particle spectra of charge transfer insulators, ” Physica B, 359 (2005) 819.
[ ] C.S. Chang, S.J. Chang, Y.K. Su, Y.C. Lin, Y.P. Hsu, S.C. Shei, S.C. Chen, C.H. Liu and U.H. Liaw, “InGaN/GaN light-emitting diodes with ITO p-contact layers prepared by RF sputtering, ” Semiconductor Science and Technology, 18 (2003) L21.
[ ] S. Besbes, H.B. Ouada, J. Davenas, L. Ponsonnet, N. Jaffrezic and P. Alcouffe, “Effect of surface treatment and functionalization on the ITO properties for OLEDs, ” Materials Science and Engineering, C26 (2006) 505.
[ ] 內海健太郎,「ITO替代材料ZnO:Al膜的開發」,光電科技,3月份,54頁,民國95年。
[ ] T. Minami, H. Nanto and S. Takata, “High conductive and transparent Aluminum doped Zinc oxide thin films prepared by RF magnetron sputtering, ” The Japan Society of Applied Physics, 23 (1984) L280.
[ ] B.M. Ataev, A.M. Bagamadova and V.V. Mamedov, “On exciton luminescence of ZnO/Al2O3 epitaxial thin films, ” Thin Solid Films, 283 (1996) 5.
[ ] H. Kim, J.S. Horwitz, W.H. Kim, A. J. Makinen, Z. H. Kafafi and D. B. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes, ” Thin Solid Films, 420 (2002) 539.
[ ] C. Charton, N. Schiller, M. Fahlabd, A. Hollander, A. Wedel and K. Noller, “Development of high barrier films on flexible polymer substrates, ” Thin Solid Films, 502 (2006) 99.
[ ] G.L. Ma, A.G. Xu, G.Z. Ran, Y.P. Qiao, B.R. Zhang, W.X. Chen, L. Dai and G.G. Qin, “Experimental study of the organic light emitting diode with a p-type silicon anode, ” Thin Solid Films, 496 (2006) 665.
[ ] X.T. Hao, L.W. Tan, K.S. Ong and F. Zhu, “High-performance low-temperature transparent conducting aluminum doped ZnO thin films and applications, ” Journal of Crystal Growth, 287 (2006) 44.
[ ] T. Minami, T. Miyata, K. Inara, Y. Minamino and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO-Cu2O heterojunction devices, ” Thin Solid Films, 494 (2006) 47.
[ ] W.W. Wenas, S. Riyadi, “Carrier transport in high-efficiency ZnO/SiO2/Si solar cells, ” Solar Energy Materials & Solar Cells, 90 (2006) 3261.
[ ] Z. Chen, Y. Tang, L. Zhang and L. Luo, “Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells, ” Electrochimica Acta, 51 (2006) 5870.
[ ] T. Sasabayashi, N. Ito, E. Nishimura, M. Kon, P.K. Song, K. Utsumi, A. Kaijo and Y. Shigesato, “Comparative study on structure and internal stress in tin-doped indium oxide and indium-zinc oxide films deposited by r.f. magnetron sputtering, ” Thin Solid Films, 445 (2003) 219.
[ ] K. Noda, H. Sato, H. Itaya and M. Yamada, “Characterization of Sn-doped In2O3 film on roll-to-roll flexible plastic substrate prepared by dc magnetron sputtering, ” The Japan Society of Applied Physics, 42 (2003) 217.
[ ] T. Minami, T. Kakumu, Y. Takeda, S. Takata, “Highly transparent and conductive ZnO-In2O3 thin films prepared by d.c. magnetron sputtering, ” Thin Solid Films, 290 (1996) 1.
[ ] N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue and Y. Shigesato, “Electrical and optical properties of amorphous indium zinc oxide films, ” Thin Solid Films, 496 (2006) 99.
[ ] R. Martins, P. Almeida, P. Barquinha, L. Pereira, A. Pimentel, I. Ferreira and E. Fortunato, “Electron transport and optical characteristics in amorphous indium zinc oxide films, ” Journal of Non-Crystalline Solids, 352 (2006) 1471.
[ ] H.M. Kim, S.K. Jung, J.S. Ahn, Y.J. Kang and K.C. Je, “Electrical and optical properties of In2O3-ZnO films deposited on polyethylene terephthalate substrates by radio frequency magnetron sputtering, ” The Japan Society of Applied Physics, 42 (2003) 223.
[ ] J. Ho and C. Chen, “Power effects in Indium-Zinc oxide thin films for OLEDs on flexible applications, ” Journal of The Electrochemical Society, 152 (2005) G57.
[ ] K. Ramamoorthy, K. Kumar, R. Chandramohan and K. Sankaranarayanan, “Review on material properties of IZO thin films useful as epi-n-TCOs in opto-electronic (SIS solar cells, polymeric LEDs) devices, ” Materials Science and Engineering B, 126 (2006) 1.
[ ] K.Y. Son, D.H. Park, J.H. Lee, J.J. Kim and J.S. Lee, “Phase development procedure of In2O3(ZnO)3 ceramics and its sintering behavior, ” Solid State Ionics, 172 (2004) 425.
[ ] Y. Jung, J. Seo, D. Lee and D. Jeon, “Influence of dc magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film, ” Thin Solid Films, 445 (2003) 63.
[ ] J.K. Lee, H.M. Kim, S.H. Park and J.J. Kim, “Heat treatment effects on effects on electrical and optical properties of ternary compound In2O3-ZnO films, ” Journal of Applied Physics, 92 (2002) 10.
[ ] G.P. Crawford, Flexible flat panel displays, Wiley Publications, Brown University, U.S.A., (2005).
[ ] N. Ohashi, T. Ogino, I. Sakaguchi and S. Hishita, “Fabrication of epitaxial In2O3(ZnO)5 thin films by rf sputtering and their characterization by X-ray and electron diffraction techniques, ” Journal of Crystal Growth, 237 (2002) 558.
[ ] D. Park, K. Son, J. Lee, J. Kim and J. Lee, “Effect of ZnO addition in In2O3 ceramics: defect chemistry and sintering behavior, ” Solid State Ionics, 172 (2004) 431.
[ ] D.F. Lii, J.L Huang, I.J. Jen, S.S. Lin and P. Sajgalik, “Effects of annealing on the properties of indium–tin oxide films prepared by ion beam sputtering, ” Surface and coatings technology, 192 (2005) 106.
[ ] E. Burstein, “Anomalous optical absorption limit in InSb, ” Journal of Applied Physics, 93 (1954) 455.
[ ] 楊明輝,「金屬氧化物透明導電材料的基本原理」,工業材料,一百七十九期,134頁,民國九十年。
[ ] J.S. Hong, B.R. Rhee, H.M. Kim and K.C. Je, “Enhanced properties of In2O3–ZnO thin films deposited on soda lime glass due to barrier layers of SiO2 and TiO2, ” Thin Solid Films, 467 (2004) 158.
[ ] W.M. Kim, D.Y. Ku, I.K. Lee, Y.W. Seo and B.K. Cheong, “The electromagnetic interference shielding effect of indium–zinc oxide/silver alloy multilayered thin films, ” Thin Solid Films, 75(2004)162.
[ ] Y.S. Jung, J.Y. Seo, D.W. Lee and D.Y. Jeon, “Influence of dc magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film, ” Thin Solid Films, 445 (2003) 63.
[ ] N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue and Y. Shigesato, “Electrical and optical properties of amorphous indium zinc oxide films, ” Thin Solid Films, 496 (2006) 99.
[ ] M. Ohring, Materials science of thin films, Academic Press Publications, Hoboken, New Jersey, U. S. A., (2002).
[ ] J Venables, “Nucleation and growth of thin films, ” Journal of Applied Physics, 47 (1984) 399.
[ ] R. F. Bunshah, Deposition technologies for films and coatings, Noyes Publications, Park Ridge, New Jersey, U. S. A., (1982).
[ ] 潘漢昌,陳宏彬,張永欣,蕭健男,「塑膠基板鍍膜與製程簡介」,科儀新知,第二十六卷第五期,88頁,民國九十四年。
[ ] Hess Karl, Advanced theory of semiconductor devices, N.J., Prentice-Hall, (1988).
[ ] Willardson, Robert K., Semiconductors and Semimetals, Academic Press, New York (1967).
[ ] Martin von Allmen, Laser-beam interactions with materials: physical principles and applications, Springer, Berlin (1987).
[ ] J. Y. Chen, Semiconductors-on-plastic a process technologies review, FlexICs Inc. (2003).
[ ] D. Basting, G. Marowsky, Excimer laser technology, Springer Publications, U. S. A., (2004).
[ ] H. Kuriyama, S. Kiyama, S. Noguchi, H. Iwata, “Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor, ” Japanese Journal of Applied Physics, 30 (1991) 3700.
[ ] H. Kuriyama, T. Nohda, S. Kiyama, S. Ishida, S. Noguchi, H. Iwata, “Lateral grain growth of poly-Si films with a specific orientation by an excimer laser annealing method, ” Japanese Journal of Applied Physics, 32 (1993) 6190.
[ ] H. Kuriyama, “Excimer laser annealing technology for poly-Si thin film transistors fabrication, ” ESSDERC, (1996).
[ ] J.S. Im, H.J. Kim, M.O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films, ” Applied Physics Letters, 63 (1993) 1969.
[ ] M.Crowder, P.M. Smith, R.S. Sposili, H. S. Cho, “Low-temperature single-crystal Si TFTs fabricated on Si films processed via sequential lateral solidification, ” Electron Device Letters, 19 (1998) 8.
[ ] K. Lee, “A study on laser annealed polycrystalline silicon thin film transistors (TFTs) with SiNx gate insulator, ” (2004).
[ ] Orazio Svelto, Principoes of lasers, Italy (1989).
[ ] 林三寶,「雷射原理與應用」,全華公司,民國八十年。
[ ] 陳建人,「真空技術與應用」,國科會精密儀器中心,民國九十年。
[ ] B. E. Warren, “Temperature Effect on the Breadth of Powder Pattern Reflections, ” Acta Crystal, A32 (1976) 897.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔