(3.237.20.246) 您好!臺灣時間:2021/04/15 10:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳淑鈴
研究生(外文):Shu-Ling Chen
論文名稱:溫度效應對FCBGA在彎曲試驗下之疲勞壽命的影響
論文名稱(外文):Thermal Effects on the Fatigue Life of FCBGA Component under Cyclic Bend Test
指導教授:陳永樹陳永樹引用關係
指導教授(外文):Y. S. Chen
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:62
中文關鍵詞:彎曲測試疲勞壽命覆晶式球柵陣列構裝有限元素分析
外文關鍵詞:Bend TestFatigue LifeFCBGAFEA.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在探討溫度效應對覆晶球柵陣列構裝(Flip Chip Ball Grid Array, FCBGA)元件可靠度之影響進行研究。研究方式係以四點彎曲測試,分別對FCBGA元件在25℃、75℃以及100℃之條件下,進行循環彎曲試測,以期了解構裝內部錫球在溫度效應下之疲勞壽命。在四點彎曲測試中,採用具有Daisy Chain的FCBGA做為測試樣品,Daisy Chain將FCBGA內部的每個錫球串聯成電路,在進行四點彎曲測試時,同步擷取Daisy Chain的電阻訊號,據以判定元件是否失效,並透過光學顯微鏡觀察錫球之失效模式。此外,同時利用有限元素分析,模擬FCBGA元件在不同溫度下之四點彎曲測試時錫球之受力情況,並由模擬結果計算角落錫球於循環彎曲測試之塑性應變區間,配合疲勞壽命公式,估算錫球之疲勞壽命。所得之理論計算壽命值再與實驗壽命值比較,探討溫度效應對元件可靠度之影響。
研究發現元件壽命會隨著溫度上升而下降,而錫球發生疲勞破壞的位置在於錫球與電路板接合界面上。此外,在有限元素分析中,先後選用四分之一及切片模型進行分析,以進一步探討不同分析模型對疲勞壽命預估之準確度的影響,比較之後發現以四分之一模型所得之結果較為準確。綜合言之,本研究對於FCBGA構裝元件於溫度效應下之可靠度,提供一個有效的評估模式,將可提供設計者於產品設計時的參考,以期達到在設計階段即可掌握元件之可靠度。
In this study, the temperature effect on the reliability of the Flip Chip Ball Grid Array (FCBGA) component is investigated through combining experiment, finite element analysis (FEA) and the theoretical fatigue life calculation. The four-point bend test is conducted for the fatigue life of the FCBGA at various evaluated temperatures, namely 25℃, 75℃ and 100℃. During the tests, the daisy chain circuits, which link up all the solder balls of the component in series connection with certain initial resistance, are used for the checking up of the component failure. The surge in the resistance of the circuits are used as indices for the solder ball’s failure and the corresponding test cycle is then regarded as the fatigue life of the test component. After the tests, the failure mode analysis is introduced to observe the failure mechanism of the solder balls.
For the finite element analysis, it is employed to simulate the FCBGA component when subjected to a cyclic bending load under specified temperatures. The resulted strains at the corner solder ball can then be used to estimate the fatigue life with the theoretical fatigue life model. The influence of the temperature effect on the reliability of component can be examined further by comparing the estimated fatigue life with the experimental fatigue life.
It is found that the life of the FCBGA component at higher temperatures is less than that at lower temperatures. The failure locations are all observed to occur at the interface between bulk solder and printed circuit board. Besides, the accuracy of the fatigue life prediction with the quarter and the sliced finite element models is also examined. It indicates that the former is more accurate than the later in predicting the fatigue life. To summarize, the investigation offers an efficient way to evaluate the temperature effect on the reliability of the FCBGA component. It can provide the designer to have idea of the component life so that the reliability can be improved right at the design stage.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
符號說明 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究背景與目的 2
1.3 文獻回顧 4
1.4 論文架構 6
第二章 可靠度分析與疲勞壽命理論 7
2.1 可靠度分析 7
2.1.1 故障率 8
2.1.2 機率密度函數 8
2.2 疲勞壽命理論 9
第三章 實驗方法與結果 11
3.1 實驗設備 11
3.2 測試樣品 16
3.3 架設方法 17
3.4 實驗原理 19
3.5 實驗結果 21
3.5.1 一次下壓彎曲試驗 21
3.5.2 循環下壓彎曲試驗 24
3.6 錫球破壞情形 25
第四章 有限元素分析 28
4.1 有限元素模型建構 28
4.2 邊界條件與負載 34
4.3 收斂性測試 38
4.4 切片模型之模擬結果 39
4.4.1 切片模型於環境溫度25℃時之模擬結果 40
4.4.2 切片模型於環境溫度75℃時之模擬結果 42
4.4.3 切片模型於環境溫度100℃時之模擬結果 44
4.5 四分之一模型之模擬結果 46
4.5.1 四分之一模型於環境溫度25℃時之模擬結果 46
4.5.2 四分之一模型於環境溫度75℃時之模擬結果 48
4.5.3 四分之一模型於環境溫度100℃時之模擬結果 50
第五章 結果討論 52
5.1 錫球疲勞壽命 52
5.2 不同模型之差異比較 55
參考文獻 59
1.C. Kanchanomai, Y. Miyashita, Y. Mutoh, “Low-Cycle Fatigue and Mechanisms of A Lead-Free Solder 96.5Sn/3.5Ag,” Journal of Electronic Materials, Vol. 31, pp. 142-151, 2002.
2.C. Kanchanomai, Y. Miyashita, “Low-Cycle Fatigue Behavior and Mechanical of A Eutectic Sn-Pb Solder 63Sn/37Pb,” International Journal of Fatigue, Vol. 24, pp. 671-683, 2002.
3.C. Kanchanomai, et al., “Low-Cycle Fatigue Test for Solders Using Non-Contact Digital Image Measurement System,” International Journal of Fatigue, Vol. 24, pp. 57-67, 2002.
4.H. Nayeb-Hashemi, P. Yang, “Mixed Mode I/II Fracture and Fatigue Crack Growth along 63Sn/37Pb Solder/Brass Interface,” International Journal of Fatigue, Vol. 23, pp. 325-335, 2001.
5.C. Andersson, et al., “Comparison of Isothermal Mechanical Fatigue Properties of Lead-Free Solder Joints and Bulk Solders,” Materials Science and Engineering A, 394(2005), pp. 20-27, 2004.
6.P. L. Tu, et al., “Comparative Study of Micro-BGA Reliability under Bending Stress,” IEEE Transactions on Advanced Packaging, Vol. 23, pp. 750-756, 2000.
7.L. Leicht, A. Skipor, “Mechanical Cycling Fatigue of PBGA Package Interconnects,” Microelectronics Reliability, Vol. 40, pp. 1129-1133, 2000.
8.P. Lall, et al., “Model for BGA and CSP Reliability in Automotive Underhood Application,” IEEE Transaction on Components and Packaging Technologies, Vol. 27, pp. 585-593, 2004.
9.S.C. Hung, et al., “Board Level Reliability of PBGA Using Flex Substrate,” Microelectronics Reliability, 41(2001), pp. 677-687, 2000.
10.Phil Geng, Philip Chen, Yun Ling, “Effect of Strain Rate on Solder Joint Failure under Mechanical Load,” Electronic Components and Technology Conference, pp. 974-978, 2002.
11.John H. Lau & Yi-Hsin Pao, “Solder joint reliability of BGA, CSP, Flip Chip, and fine pitch SMT assemblies,” McGraw-Hill, Inc., New York, 1997.
12.John H. L. Pang, et al., “Mechanical Deflection System (MDS) Test and Methodology for PBGA Solder Joint Reliability,” IEEE Transactions on Advanced Packaging, Vol. 24, pp. 507-514, 2001.
13.Elmer E. Lewis,趙浡霖 譯,「可靠度工程導論」,科技圖書股份有限公司,台北市,1989。
14.楊善國,「可靠度工程概論」,全華科技圖書股份有限公司,台北市,2005。
15.李輝煌,「ANSYS工程分析-基礎與觀念」,高立圖書股份有限公司,台北縣五股鄉,2005。
16.陳志仁,「BGA受循環彎曲作用下之疲勞破壞分析與可靠度評估」,國立台灣大學機械工程學研究所,碩士論文,2003。
17.王宣勝,「Sn-58Bi、Sn-51In、Sn-37Pb球格陣列構裝的動態疲勞分析及可靠度分析」,國立台灣大學材料科學與工程學研究所,博士論文,2003。
18.楊裕州,「電路板上PBGA元件之振動疲勞壽命試驗與可靠度分析」,私立元智大學機械工程研究所,碩士論文,2003。
19.蘇仁章,「電子元件在含溫度效應之動態負載下的可靠度研究」,私立元智大學機械工程研究所,碩士論文,2005。
20.William D. Callister, JR., “Materials Science and Engineering,” Third ed., John Wiley & Sons, Inc., New York, 1994.
21.L. F. Coffin, “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” Transaction ASME, Vol. 76, pp. 931-950, 1954.
22.S. S. Manson, “Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Symposium, pp. 9-75, 1953.
23.IPC-9701, Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments, Jan. 2002.
24.鄭武輝,「無鉛焊錫成分與綠漆通孔尺寸對FCBGA元件可靠度影響之研究」,私立元智大學機械工程研究所,碩士論文,2006。
25.Johnson, Z., “Implementation of and Extensions to Darveaux’s Approach to Finite-Element Simulation of BGA Solder Joint Reliability,” ECTC Conference Technical Proceedings, pp. 1190-1195, 1999.
26.Tong Yan Tee, K. Sivakumar, and Antonio Do-Bento-Vieira, “Board Level Solder Joint Reliability Modeling of LFBGA Package,” Int’l Symp on Electronic Materials & Packaging, pp. 51-54, 2000.
27.陳信文、陳立軒、林永森、陳志銘,「電子構裝技術與材料」,高立圖書有限公司,台北縣五股鄉,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔