(3.238.174.50) 您好!臺灣時間:2021/04/11 11:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳泰君
研究生(外文):Tai-Chun Chen
論文名稱:活性碳纖維布對VOCs吸附動力模式之研究
論文名稱(外文):Adsorption Kinetics of VOCs adsorbed on Activated Carbon Fibers
指導教授:江右君江右君引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:107
中文關鍵詞:活性碳纖維布吸附貫穿揮發性有機物
外文關鍵詞:activated carbon fiberACFadsorptionbreakthroughvolatile organic compoundsVOCs
相關次數:
  • 被引用被引用:8
  • 點閱點閱:254
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用商用活性碳纖維,以硝酸含浸改質、氫氧化鉀含浸改質以及電化學改質輔以高溫處理的方式,對活性碳纖維布進行改質處理,再以場發射掃瞄式電子顯微鏡、氮氣等溫吸附/脫附實驗、熱重分析、X光光子光譜儀及X光繞射分析儀等多種分析方式討論改質後的活性碳纖維布特性與未處理的樣本間的差異。最後再以吸附貫穿實驗來實際驗證改質後樣本的吸附效能為提升或下降,並以此結果與過去學者所研究出的吸附貫穿方程式結合,推導出適用於活性碳纖維布管柱吸附系統的經驗方程式。
藉由場發射掃瞄式電子顯微鏡觀察,結果中顯示改質處理對於活性碳纖維表面會造成不同程度以及方式之破壞,硝酸改質以及氫氧化鉀改質對於纖維表面的破壞屬侵蝕性破壞,而電化學改質則是造成剝離性之破壞。熱重分析瞭解樣本在經過改質處理後熱穩定性降低,使得樣本產生最大重量損失之溫度降低。高解析C 1s圖譜分析則可得知樣本經過改質處理之樣本graphite carbon的含量皆會下降,而phenolic groups的含量則會增加。carbonyl groups除了硝酸改質處理外含量均增加,但在電化學改質樣本中若再經高溫處理則會使carbonyl groups消失。X光繞射分析指出各樣本均含有結晶形式為(0 0 2)以及(1 0 1)的石墨碳存在。氮氣等溫吸附/脫附實驗結果中可發現原樣本以及改質處理後之樣本均屬於微孔性材料。
活性碳纖維布吸附貫穿實驗之結果中顯示,環境溫度對於吸附異丙醇及丁酮的貫穿時間以及吸附量造成影響,隨著環境溫度的上升吸附量會降低,而貫穿時間則會提早。經由Wheeler方程式計算得到之kv值所預測之貫穿時間趨勢與實驗值有所差異,此結果顯示除了方程式中之變數仍可能有其他影響活性碳纖維布樣本吸附VOC之貫穿時間。
In this study, we use several treatments including nitric acid impregnation, potassium hydroxide (KOH) impregnation, electrochemical oxidation and heat treatment on PAN-based activated carbon fibers (ACFs). In order to find out what have been done in these treatments, there’s some analysis been taken. Surface morphology of ACFs were observed by field emission scanning electric microscope (FESEM) image. Textural characterization was performed using nitrogen adsorption at 77K. Thermal stability of ACFs were analyzed by using thermal gravity analysis (TGA). Quantities of surface oxygen groups and graphitic crystallite size were analyzed by using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Breakthrough curves of methyl-ethyl-ketone (MEK) and isopropyl alcohol (IPA) were carried out understanding the adsorption kinetics of ACFs.
In the results of FESEM, we could find that surface morphology of ACFs were changed with different kinds of modification. There’s corrosion occurred on ACFs when using nitric acid or KOH for treatment. Electrochemical oxidation enabled ACFs to be stripped from its surface. Thermal stability of ACFs reduced after treatment were observed by TGA analysis. Surface chemistry of ACFs also changed after treatment. We could find that graphitic carbon decreased and phenolic groups increased after treatment. Carbonyl groups only decreased in the samples treated by nitric acid and heat treatment after electrochemical oxidation. The results of X-ray diffraction (XRD) analysis indicate that there are graphitic carbon peaks located at 2θ are 26 and 44 o, which can be indexed to C (0 0 3) and C (1 0 1), respectively. Each sample is micro-porous material analyzed by using nitrogen adsorption at 77K.
In the breakthrough experiments, we could find that breakthrough time and VOCs amount adsorbed on ACFs decreased when temperature rised. Adsorption kinetic constant of Wheeler equation were fitted. Results of curve fitting tell us there remains some other parameters would affect the breakthrough time of adsorption of VOCs.
書名頁............................................................................................................................I
論文口試委員審定書...................................................................................................II
授權書..........................................................................................................................III
摘要..............................................................................................................................IV
Abstract.........................................................................................................................V
誌謝.............................................................................................................................VII
目錄.............................................................................................................................VIII
圖目錄...........................................................................................................................X
表目錄..........................................................................................................................XII

第一章 前言
1.1 研究緣起..............................................................................................................1-1
1.2 研究目的..............................................................................................................1-1
1.3 研究內容..............................................................................................................1-2

第二章 文獻回顧
2.1 活性碳纖維...........................................................................................................2-1
2.2 活性碳纖維製作..................................................................................................2-1
2.3 活性碳纖維改質技術..........................................................................................2-3
2.3.1 化學改質...................................................................................................2-4
2.3.2 電化學改質...............................................................................................2-4
2.3.3 熱處理改質...............................................................................................2-4
2.3.4 氧氣電漿改質...........................................................................................2-4
2.3.5 熱處理.......................................................................................................2-5
2.4 吸附理論..............................................................................................................2-5
2.4.1 吸附理論…………...................................................................................2-5
2.4.2 氮氣等溫吸附/脫附曲線..........................................................................2-6
2.4.3 丁酮及異丙醇之吸附...............................................................................2-8
2.5 吸附貫穿曲線......................................................................................................2-8

第三章 研究方法
3.1 研究流程規劃......................................................................................................3-1
3.2 活性碳纖維布......................................................................................................3-2
3.3 活性碳纖維布改質處理......................................................................................3-2
3.3.1 硝酸含浸改質...........................................................................................3-2
3.3.2 氫氧化鉀含浸改質...................................................................................3-3
3.3.3 電化學改質...............................................................................................3-4
3.3.4 樣本高溫處理...........................................................................................3-5
3.4 活性碳纖維布特性分析......................................................................................3-6
3.4.1 場發射掃瞄式電子顯微鏡.......................................................................3-6
3.4.2 熱重分析儀...............................................................................................3-6
3.4.3 X光光子光譜儀........................................................................................3-7
3.4.4 X光繞射分析儀........................................................................................3-7
3.4.5氮氣等溫吸附/脫附實驗...........................................................................3-7
3.5 吸附貫穿實驗
3.6.1吸附系統之建立........................................................................................3-7
3.5.2 吸附質........................................................................................................3-9
3.5.3 實驗操作流程...........................................................................................3-10
3.6 吸附理論模式之建立..........................................................................................3-11

第四章 結果與討論
4.1活性碳纖維布物化特性分析...............................................................................4-1
4.1.1 場發射掃瞄式電子顯微鏡.......................................................................4-1
4.1.2 熱重分析....................…………………………………………………...4-3
4.1.3 化學分析能譜...........................................................................................4-8
4.1.4 X光繞射分析圖譜..................................................................................4-15
4.1.5 N2等溫吸/脫附曲線................................................................................4-17
4.1.6 小結.........................................................................................................4-22
4.2活性碳纖維布吸附丁酮、異丙醇之效能分析.................................................4-22
4.2.1 活性碳纖維布吸附丁酮之貫穿曲線及吸附量分析.............................4-23
4.2.2 活性碳纖維布吸附異丙醇之貫穿曲線及吸附量分析……………….4-28
4.2.3 小結.........................................................................................................4-34
4.3 活性碳纖維布貫穿實驗之相關性分析............................................................4-34

第五章 結論與建議
5.1 結論......................................................................................................................5-1
5.2 建議......................................................................................................................5-2

參考文獻.................................................................................................................R-1
口試委員意見回覆表..........................................................................................R-5
Bansal, R.C., Donnet, Jean-Baptiste and Stoeckli, F., Active Carbon, Marcel Dekker, INC., NewYork and Basel, 1988.
Biron, E. and Evans, M. J. B., “Dynamic adsorption of water-soluble and insoluble vapours on activated carbon,” Carbon, 36: 1191-1197, 1998.
Brunauer, S. , Emmett, P. H. and Teller, E., “Adsorption of gases in multimolecular layers,” Journal of American Chemical Society, 60: 309, 1938.
Cal, M. P., “Characterization of gas phase adsorption capacity of untreated and chemically treated activated carbon cloths,” Ph. D. Thesis, University of Illinois at Urbana-Champaign, 1995.
Carter, J. W. and Wyzynski, M. L., "The presure swing adsorption drying of compress air," Chemical Engineering Science, 38: 1093, 1983.
Chiang, H. L. , Tsai, J. H. , Chang, G. M. and Hsu, Y. C., “Comparison of a single grain activated carbon and column adsorption system,” Carbon, 40: 2921-2930, 2002.
Crank, J., The Mathematics of Diffusion, 2nd Ed., Oxford University Press, 1979.
de Boer, J. H., The Structure and Properties of Porous Materials, Butterworth, London, 1958.
Dastgheib, S. A. and Karanfil, T., “Adsorption of oxygen by heat-treated granular and fibrous activated carbons,” Journal of Colloid and Interface Science, 274: 1-8, 2004.
Figueiredo, J. L. , Pereira, M. F. R. , Freitas, M. M. A. and Orfao, J. J. M., “Modification of the surface chemistry of activated carbon,” Carbon, 37:1379-1389, 1999.
Gaur, V. , Sharma, A. and Verma, N, “Preparation and characterization of ACF for adsorption of BTX and SO2,” Chemical Engineering and Processing, 45: 1-13, 2006.
Gregg, S. J. and Sing, K. S.W., Adsorption, Surface Area and Porosity, Second edition, Academic Press, London, 1982.
Guo, J. and Lua, A. C., “Textural and chemical charaterizations of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages,” Journal of Colloid and Interface Science, 254: 227-233, 2002.
Huang, Z. H. , Kang, F. , Liang, K. M. and Hao, J., “Breakthrough of methyethylketone and benzene vapors in activated carbon fiber beds,” Journal of Hazardous Materials, B98: 107-115, 2003.
Huang, Z. H. , Kang, F. , Zheng, Y. P. , Yang, J. B. and Liang, K. M., “Adsorption of trace polar methy-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers,” Carbon, 40: 1363-1367, 2002.
Jankowska, H., Swiatkowski, A. and Choma, J., Active Carbon, Ellis Horwood, New York, 1991.
John, L. A., Sansone, E. B. and Farris, T. S., " The effect of moisture on the adsorption of chloroform by activated carbon," Am. Ind. Hyg. Assoc., 46: 20-23, 1985.
Kiselev, A. V., The Structure and Properties of Porous Materials, Butterworth, London, 1958.
Kodama, S. , Habaki, H , Sekiguchi, H and Kawasaki, J., “Surface modification of adsorbents by dielectric barrier discharge,” Thin Solid Films, 407: 151-155, 2002.
Koresh, J., “Study of molecular sieve carbons: the Langmuir model in ultramicroporous adsorbents,” Journal of Colloid and Interface Science, 88: 398-406, 1982.
Laszlo, K. , Tombacz, E. and Josepovits, K., “Effect of activation on the surface chemistry of carbons from polymer precursors,” Carbon, 39: 1217-1228, 2001.
Lee, J. G. , Kim, J. Y. and Kim, S. H., “Effect of microporosity on the specific capacitance of polyacrylonitric-based activated carbon fiber,” Journal of Power Sources, 160: 1495-1500, 2006.
Lin, S. H. and Wang, C. S., “Recovery of isopropyl alcohol from waste solvent of a semiconductor plant,” Journal of Hazardous Materials, 106B: 161-168, 2004.
Lo, S. , Ramirez, D. , Rood, M. and Hay, K. “Characterization of the physical, thermal and adsorption properties of a series of activated carbon fiber cloths,” A&WMA 95th Annual Conference and Exhibition, Air &Waste Management Association, Baltimore, MD, 2002.
Mangun, C. L. , Benak, K. R. , Economy, J. and Foster, K. L., “Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia,” Carbon, 39: 1809-1820, 2001.
McEnaney, B., “Estimation of the dimensions of microporous in active carbons using the Dubinin-Radushkevich equation,” Carbon, 25: 69-75, 1987.
Nabais, J. M. V. , Carrott, P. J. M. and Ribeiro Carrott, M. M. L., “From commercial; textile fibres to activated carbon fibres: Chemical transformations,” Materials Chemistry and Physics, 93: 100-108, 2005.
Noll, K. E. , Gounaris, V. and Hou, W. S., “ Adsorption technology for air and water pollution control,” Michigan: Lewis, 1992.
Parfitt, G. D., Sing, K. S. W. and Urwin, D., "The analysis of the nitrogen adsorption isotherms of microporous materials," Journal of Colloid Interface Science, 53: 187-193, 1975.
Park, S. J. and Kim, Y. M., “Adsorption behaviors of heavy metal ions onto electrochemically oxidized activated carbon fibers,” Materials Science and Engineering A, 391: 121-123, 2005.
Park, S. J. , Shin, J. S. , Shim, J. W. and Ryu, S. K., “Effect of acidic treatment on metal adsorption of pitch-based activated carbon fibers,” Journal of Colloid and Interface Science, 275: 342-344, 2004.
Park, S. J. and Kim, Y. M., “Influence of anodic treatment on heavy ion removal by activated carbon fibers,” Journal of Colloid and Interface Science, 278: 276-281, 2004.
Park, S. J. and Kim, B. J., “Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers,” Journal of Colloid and Interface Science, 275: 590-595, 2004.
Pendleton, P., Zettlemoyer, A. C. and Micale, F. J., Adsorption from Solution, Academic Press, New York, 1983.
Pittman, C. U.,Jiang, W.,Yue, Z. R.,Leon y Leon, C. A., “Surface area and pore size distribution of microporous carbon fibers prepared by electrochemical oxidation,” Carbon, 37: 85-96, 1999.
Rivin, D. and Kendrick, C. E., “Adsorption properties of vapor-protective fabrics containing activated carbon,” Carbon, 35: 1295-1305, 1997.
Rong, H. , Ryu, Z. , Zheng, J. and Zhang, Y., “Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde,” Journal of Colloid and Interface Science, 261: 207-212, 2003.
Rood, M. J. , Sullivan, P. D. , Lordgooei, M. , Qi, S. and Hay, K. J., “Removal and recovery of methyl ethyl ketone (MEK) vapor emissions by carbon-fiber adsorber-cryogenic condensors,” CERL Technical Report, 99/90, 1999.
Rouquerol, F , Rouquerol, J and Sing, K, Adsorption by powders and porous solids: Principles, methodology and applications, Academic Press, San Diego, 1999.
Ruthven, D. M., “Principle of adsorption and adsorption process,” Wiley, New York, 1984.
Shim, J. W. , Park, S. J. and Ryu, S. K., “Effect of modification of HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers,” Carbon, 39: 1635-1642, 2001.
Shin, S. , Jang, J. , Yoon, S. H. and Mochida, I., “A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR,” Carbon, 35: 1739-1743, 1997.
Sing, K. S.W., Everett, D. H., Haul, R. A.W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., “Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity,” Pure & Appl. Chem., 57(4): 603-619, 1985.
Stoeckli, H. F., "On the theoretical fundation of the Dubinin-Astakhov equation," Carbon, 19: 325-326, 1981.
Stoeckli, H.F., “Microporous carbons and their characterization: the present state of the art,” Carbon, 28: 1-6, 1990.
Stoeckli, F, Jakubov, T. and Lavanchy, A., “Water adsorption in active carbons described by the Dubinin-Astakhov equation,” J. Chem. Soc. Faraday Trans., 90(5): 783-786, 1994.
Stoeckli, F., “Recent developments in Dubinin’s theory,” Carbon, 36: 363-368, 1998.
Strelko, Jr.V.,Malik,D. J., Streat,M., “Characterization of the surface of oxidized carbon adsorbents,” Carbon, 40(1): 95-104, 2002.
Tompkins, F. C., Chemisorption of Gases on Metals, Academic Press, New York, 1978.
Wheeler, A. and Robell, A. J., “Performance of fixed-bed catalytic reactors with poison in the bed,” Journal of Catalysts, 13: 299-306, 1969.
Wood, G. O. and Stampfer, J. F., “Adsorption rate coefficients for gases and vapors on activated carbons,” Carbon, 31: 195–200, 1993.
Wood, G. O., “Estimating service lives of organic vapor cartridges,” American Industrial Hygiene Association Journal, 55: 11-15, 1994.
Wood, G. O., “A review of the effects of covapors on adsorption rate coefficients of organic vapors adsorbed onto activated carbon from flowing gases,” Carbon, 40: 685-694, 2002.
Xie, J. , Wang, X. and Deng, J., “Modifying the pore structure of Pit-ACF with the chemical vapor deposition of methane and propylene,” Microporous and Mesoporous Materials, 76: 167-175, 2004.
Yang, C.M. and Janeko, K., “Nitrogen-doped activated carbon fiber as an application for NO adsorbent,” Journal of Colloid and Interface Science, 255: 236-240, 2002.
Yong, Z , Mata, V. G. and Rodrigues, A. E., “Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature,” Adsorption, 7: 41-50, 2001.
Yoon, Y. H. and Nelson, J. H., “Application of gas adsorption kinetics II. a theoretical model for respirator cartridge service life and its practical applications,” American Industrial Hygiene Association Journal, 45: 517-524, 1984.
Yue, Z. R. , Jiang, W. , Gardner, S. D. , Pittman Jr., C. U., “Surface characterization of electrochemically oxidized carbon,” Carbon, 37: 1785-1796, 1999.
Zhdanov, V. P., “Application of percolation theory to describing kinetic processes in porous solids,” Advances in Catalysis, 39:1-50, 1993.
Zielke, U.、Huttinger, K. J.、Hoffman, W. P., “Surface oxidized carbon fibers: II. chemical modification,” Carbon, 34: 999-1005, 1996.
柯志杭, “以氧化鎂及PAN纖維為觸媒進行甲醇與酚類反應之研究,” 靜宜大學應用化學研究所碩士論文, 2002.
張俊良, “壓力振盪吸附法對加油站油氣回收的探討,” 長庚大學化工與材料工程研究所碩士論文, 2001.
陳威錦, “熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究,” 中山大學環境工程研究所碩士論文, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔