跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊清泉
研究生(外文):Ching-Chyuan Yang
論文名稱:低燃速延期藥燃燒性能之研究
論文名稱(外文):Investigation of the burning properties of slow-propagation tungsten type delay composition
指導教授:陸開泰陸開泰引用關係葛揚雄
指導教授(外文):Kai-Tai LuYang-Hsiung Ko
學位類別:博士
校院名稱:國防大學中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:178
中文關鍵詞:鎢系低燃速延期藥NASA-Lewis 程式熱力學性質熱分析技術化學反應機構DSC/TG
外文關鍵詞:Slow-propagation delay compositionTungsten-metal fuelNASA-Lewis CodeBurning Thermodynamic PropertiesDSC/TG
相關次數:
  • 被引用被引用:8
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主要探討由金屬鎢(W)、鉻酸鋇(BaCrO4)、過氯酸鉀(KClO4)及二氧化矽(SiO2)四種不同成分混合而成之鎢系低燃速延期藥的燃燒性能。在配方組成規劃上,係以原始配方的重量比例W:BaCrO4:KClO4:SiO2:Viton=27:54:11:6:2為基準,除膠合劑Viton的重量比例2%維持不變外,而在20%的變異條件內調整四種不同成分之重量比例所構成的28組延期藥配方。由於NASA-Lewis Code(CET-86)的數據資料庫中不含金屬鎢及其相關化合物的熱力學參數,本研究首先擴充數據資料庫,建置金屬鎢及其相關化合物的熱力學參數,再利用NASA-Lewis程式(CET-86)進行燃燒熱力學理論的平衡計算,評估四種成分之重量比例改變對燃燒溫度與壓力的影響;其次再利用熱分析技術,以微分掃描熱卡計(Differential Scanning Calorimetry, DSC)結合熱重分析儀(Thermogravimetric Analysis, TGA)的實驗瞭解不同成分混合而成之鎢系低燃速延期藥的化學反應性能,研析各成分對延期藥化學反應機構之影響,建構不同組成配方反應熱及重量損失的量測數據,分析不同配方各成分重量變化對延期藥反應性能之影響;最後亦利用實驗方法實際量測延期藥配方之點火、延期及能量輸出性能,實驗採用實體延期藥柱,裝填於耐熱石英管中以電熱絲通電點燃,藥柱燃燒全程以高速攝影機拍攝,配合數位影片剪輯系統觀測燃燒現象,同時於石英管末端安置熱電偶量測延期藥輸出溫度,實際建構不同組成配方燃燒性能的量測數據,分析配方各成分對延期藥燃燒性能之影響。此外,我們也建立了改良延期藥配方性能評估流程,所有研究成果可作為鎢系低燃速延期藥配方改良的重要參考依據,並有助於引信自毀機構模組之研發設計。
The combustion performance of delay composition formulas which were composed of W, BaCrO4, KClO4 and SiO2 were studied. We varied weight percentage of primitive formula of these four components in range. The 28 experimental formulas with various weight ratios were analyzed. Because the database of NASA-Lewis Code (CET-86) was not including the thermodynamic parameters of metal tungsten and relevant chemical compounds, it was considered that it should be built the thermodynamic parameters of metal tungsten and relevant chemical compounds, and expanded the database. We used NASA-Lewis computer code (CET-86) to calculate the properties of the theoretical thermodynamic equilibrium and evaluated these four components’ weight percentage on the influence of the equilibrium temperature and pressure of burning. Afterward, we have been studied using thermal analysis techniques by means of differential scanning calorimetry (DSC) and thermogravimetry (TGA). Lastly, we used experimental method to measure actual igniting ability, burning rate and outputting temperature. The cylindrical delay composition was packed into a heat-resisting quartz tube and was ignited by heating wire. The phenomena of ignition, combustion and flame propagation of delay composition in the quartz tube were recorded by using a high-speed camera and the digital editing image system. Furthermore, we placed a thermocouple on the end of quartz tube to measure the flame temperature of outlet. The composition of formulas on the influence of the combustion performance was analyzed from experimental data. In addtion, we also built performance-evaluating procedures of delay composition formula. These analytic results are very important and useful for defining criteria in formulating the tungsten type slow-propagation delay composition, as well as for improving self-destruction designs of fuse.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 ix
圖目錄 x
符號說明與縮寫 xvii
1. 緒論 1
1.1 文獻回顧 1
1.2 研究動機及目的 7
2. 研究方法 9
2.1 延期藥熱力學性質的計算 9
2.2 延期藥熱分析實驗 10
2.3 延期藥燃燒、點火及延期性能測試 10
3. 實驗 11
3.1 實驗藥品及規格 11
3.2 儀器設備 11
3.2.1 熱分析實驗 11
3.2.2 延期藥配藥相關設備 12
3.2.3 實體燃燒顯像觀測實驗 12
3.3實驗配方組成規劃 17
3.4 延期藥配製 18
3.4.1 配藥程序 18
3.4.2 壓製藥柱程序 20
3.4.3 鋁製延期管裝藥及壓藥程序 20
3.4.4 安全注意事項 21
4. 結果與討論 22
4.1 燃燒熱力學性質模擬分析 22
4.1.1 NASA-Lewis Code(CET-86)數據資料庫的擴充 22
4.1.2 鎢系低燃速延期藥配方模擬計算 40
4.1.3 鎢系低燃速延期藥燃燒產物分析 49
4.1.4 熱化學平衡組成及熱力學性質解析 52
4.2 延期藥DSC實驗分析 52
4.2.1 W/KClO4/BaCrO4/SiO2系統化學反應分析 53
4.2.2 W/KClO4/BaCrO4/SiO2/Viton系統化學反應分析 56
4.2.3 不同組成配方反應性能分析 60
4.2.4 延期藥熱分析性能綜合解析 71
4.3 實體延期藥柱燃燒性能測試與分析 72
4.3.1 燃燒性能測試實驗結果 72
4.3.2 最小點火能量分析 76
4.3.3 燃燒速率分析 80
4.3.4 輸出火焰溫度分析 84
4.3.5 實體延期藥柱燃燒性能綜合分析 88
4.4 延期管藥柱燃燒性能測試與分析 89
4.4.1 燃燒性能測試實驗結果 89
4.4.2 燃燒速率分析 92
4.4.3 輸出火焰溫度分析 96
4.4.4 延期管藥柱燃燒性能解析 100
4.5 延期藥最佳配方評析 101
5. 結論 102
參考文獻 104
附錄壹、延期藥編號2至28配方經加工製備後DSC/TG圖譜 109
附錄貳、延期藥編號2至22配方實體藥柱燃燒觀測 123
附錄參、延期藥編號2至22配方輸出火焰溫度圖 144
附錄肆、延期藥編號2至28配方延期管藥柱燃燒觀測 155
附錄伍、延期藥編號2至28配方延期管藥柱輸出火焰溫度 164
自傳 178
[1]蔡瑞嬌,火工品設計原理,北京理工大學出版社,第279-280頁,2002。
[2]Cooper, P. W. and Kurowski, S. R., Introduction to the Technology of Explosives, Permissions Department, John Wiley & Sons, Inc., New York, pp. 34-35, 37-38, 1996.
[3]Ellern, H., Military and Civilian Pyrotechnics, Chemical Publishing Company Inc., p. 385, New York, 1968.
[4]Beck, M.W., Brown, M.E. and Cawthorne, D., “Pyrotechnic Delay Compositions,” Chemsa, Vol. 10(6), pp. 398-399, 401, 1984.
[5]蔡瑞嬌,火工品設計原理,北京理工大學出版社,第307頁,2002。
[6]Conkling, J. A., Chemistry of Pyrotechnics, Marcel Dekker, INC., Chapter 6 , 1985.
[7]Shachar, E. and Gany, A., “Investigation of Slow-Propagation Tungsten Delay Mixtures,” Propellants, Explosives, Pyrotechnics, Vol. 22, pp. 210-211, 1997.
[8]Nakamura, H., Taniguchi, H. and Hara, Y., “Effect of Milling on the Burning Rates of Red Lead-Ferrosilicon-Antimony (III) Sulfide Delay Compositions,” Propellants, Explosives, Pyrotechnics, Vol. 20, pp. 87-90, 1995.
[9]Berger, B. and Haas, B., “Determination of the Burning Characteristics of Zirconium and Zirconium-Nickle-Alloys with Potassium Perchlorate,” Proceedings of the Fourteenth International Pyrotechnics Seminar, p. 265, 1989.
[10]Elischer, P. P., Cleal, G. and Wilson, M., “Evaluation of a Low Toxicity Delay Composition,” Proceedings of the Eleventh International Pyrotechnics Seminar, pp. 133-146, 1986.
[11]Hedge, J., “Factors Influencing the Pyrotechnic Reaction of Silicon and Red Lead,” Propellants, Explosives, Pyrotechnics, Vol. 8(4), p. 95, 1983.
[12]McLain, J. H., Pyrotechnics From the Viewpoint of Solid State Chemistry, The Franklin Institute Press, Philadelphia, Penna, 1980.
[13]Engineering Design Handbook, Military Pyrotechnics Series, Part One-Theory and Application, AMCP 706-185, pp. 5-43 to 5-44, 1967.
[14]Shidlovskiy, A. A., Principles of Pyrotechnics, 3rd ed. FTD-HC-23-1704-74, pp. 98,232,504, 1974.
[15]Barton, T. J. and Griffiths, T. T., “The Role of Organic Binders in Pyrotechnic Reaction,” Proceedings of the Eighth International Pyrotechnics Seminar, pp. 83-98, 1983.
[16]Elischer, P. P., Cleal, G., and Wilson, M., “Evaluation of a Low Toxicity Delay Composition,” 11th Int. Pyro: Seminar, pp. 133-146, 1986.
[17]Cheng, C. K., Huang, C. R., and Wu, Y. Y., “Studies on the Delay Mix of Zr/Fe2O3,” Proceedings of the twelfth Symposium on Explosives and Pyrotechnics, 1984.
[18]Taylor, F. R., Lopez, L. R., and Farnell, P. L., “Study of the Storage Stability of a Zr/Ni Delay System Using Ampoule Microcalorimetry,” Proceedings of the Fifteenth Symposium on Explosives and Pyrotechnics, pp. 899-916, 1990.
[19]Barisin, D., and Batinic, I., “Aging of Pyrotechnic Composition- The Investigation of Chemical Change by IR Spectroscopy and X-Ray Diffraction,” Propellants, Explosives, Pyrotechnics, Vol. 14, pp. 162-169, 1989.
[20]Barisin, D., and Batinic, I., “Aging of Pyrotechnic Composition-The Reliability of X-Ray Diffraction Data for Estimation of the Quality of Signal Mix,” Propellants, Explosives, Pyrotechnics, Vol. 14, pp. 255-259, 1989.
[2]Ricks, T. F., and Valents, F. J., “On the Stability of Manganese Pyrotechnic Delay Compositions,” Proceedings of the Eighteenth International Pyrotechnics Seminar, pp. 759-772, 1992.
[22]Dixon, P. J., “New Pyrotechnic Delay Composition,” Proceedings of the ninth International Pyrotechnics Seminar, pp. 117-125, 1984.
[23]廖啟宏,“爆彈儀測試理論與數據分析”,中正理工學院主辦中華民國七十六年火藥研習會專集(一),第95-107頁,1987。
[24]Luo, K. M., “The Kinetic Parameters and Parameter Effect Factors Calculation of Multicomponent Energetic Materials Decomposition Reaction from a Single Differential Thermal Analysis Curve,” Propellants, Explosives, Pyrotechnics, Vol. 21, pp. 206-214, 1996.
[25]Brinkley, S. R., “Note on the Conditions of Equilibrium for Systems of Many Constituents,” The Journal of Chemical Physics. Vol. 14, pp. 563-564, 1946.
[26]Brinkley, S. R., “Calculation of the Equilibrium Composition of Systems of Many Constituents,” The Journal of Chemical Physics. Vol. 15, pp. 107-110, 1947.
[27]Krieger, F. J., and White, W. B., “A Simplified Method for Computing the Equilibrium Composition of Gaseous Systems,” The Journal of Chemical Physics. Vol. 16, pp. 358-360, 1948.
[28]Cook, M. A., The Science of High Explosives, Robert E. Krieger Publishing Co. Inc. Huntington, New York, p. 379, 1971.
[29]White, W. B., Johnson, S. M., and Dantzig, G. B., “Chemical Equilibrium in Complex Mixtures,” The Journal of Chemical Physics. Vol. 28, p. 751, 1958.
[30]Cowperthwaite, M., Tiger program documentation, Stanford Research Institute, 1974.
[31]Halbleib, J. A., Tiger: a One-Dimensional, Multilayer Electron/Photon Monte Carlo Transport code, Sandia National Laboratories, 1974.
[32]Gorden and McBride CET 86 Manual, computer program for calculation of Complex Chemical Compositions Rocket performance, Incident and Reflected Shocks, and Chapman-Jouget Detonations, National Aeronautics and Space Administration SP-273, pp. 1-2,33-34, 1986.
[33]葛揚雄,李偉雄,“M204A2引信延期視流觀察研究”,火藥技術,第18卷, 第2期,第71-81頁,2002。
[34]Zimmer-Galler, R., “The combustion propagation of tungsten delay powders,” Proceedings of 6th Symposium on Explosives and Pyrotechnics, 4-6, pp 1-14 1969.
[35]H. Nakamura, N. Suruga, M. Akiyoshi, Y. Hara, “Effect of pressure on the combustion characteristics of tungsten-potassium perchlorate-barium chromate delay powder, Journal Industrial Explosive Society Japan, Vol 61 (5), pp. 224-229, 2000.
[36]王志朋、勞允亮,“鎢系延期藥預點火反應機理研究”,火工品,第4卷,第19-22頁,1996。
[37]蔡瑞嬌,火工品設計原理,北京理工大學出版社,第294-295頁,2002。
[38]Hardt, A.P., Pyrotechnics, Pyrotechnics Publications, pp.308-311, 2001.
[39]MIL-D-82710(OS), “Military Specification Delay, Composition Tungsten- Fluorocarbon Copolymer,” pp. 1-12, December 5, 1984.
[40]Rose, J. E., “Burn Time Extension in Modified Tungsten Delay,” Proc. of the 10th Symposium on Explosives and Pyrotechnics, pp. 2-1, 1979.
[41]Lide, David R., Handbook of Chemistry and Physics, 75th, CRC Press, ING , 1995.
[42]Dikhter, I. Ya., and Lebedev, S. V., “Heat Capacity of Tungsten Near the Melting Point”, High Temperature, Vol. 8. No.1, pp. 51-54, 1970.
[43]Chekhovskoi, V. Ya., “Enthalpy and Heat Capacity of Tungsten in the 400-3600 degree K Temperature”, High Temperature, Vol. 18, No. 6, pp. 888-892, 1980.
[44]Nadiradze, A. A., Chanturishvili, L. D., and Gvelesinani, G. G., “Enthalpy and Heat Capacity of Tungsten Oxides of Lanthanum at High Temperatures”, High Temperature, Vol. 17, No. 3, pp. 436-439, 1979.
[45]NIST Chemistry Web Book, http:/webbook. nist.gov/chemistry.
[46]E-C Koch, “Metal-Fluorocarbon-Pyrolants IV: Thermochemical and Combustion Behaviour of Magnesium/Teflon/Viton (MTV)”, Propellants, Explosives, Pyrotechnics Vol 27(6), pp. 340-351, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top