跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巫承翰
研究生(外文):Cheng-Han Wu
論文名稱:分析EDF(內胚層衍生激素)基因轉殖鼠和大量生產EDF蛋白
論文名稱(外文):Molecular analysis of EDF transgenic mice and large scale production of EDF protein
指導教授:江明格
指導教授(外文):Ming-Ko Chiang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:分子生物研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:73
中文關鍵詞:內胚層衍生激素
外文關鍵詞:Endoderm Derived Factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在胰臟的藍氏小島(胰島)中有一群被命名為β-cells的細胞,這種具有分泌胰島素能力的細胞佔整個胰島的細胞總數高達65~80%,胰島素是調控血糖的重要內分泌賀爾蒙,而第一型糖尿病目前被認為可能是由於β-cells的缺失或是失去弁鄔瓴伬P的,誘導β-cells再生或是利用體外移植β-cells做替換的方法,對治療第一型糖尿病的病患而言可說是一線曙光,然而,病患對β-cells的需求量遠大於目前所能提供的量,如果能夠發現胰臟內分泌細胞形成的機制,說不定能夠增進治療第一型糖尿病的治療方式;在先前的研究藉由differential screening的方式發現了一個尚未被鑑定的基因,將之命名為內胚層衍生激素 (EDF),這個基因會轉譯出一個大約70KDa的蛋白質,並且在其蛋白質的N端帶有一段分泌型的信號
Beta cells are a type of cells located in the islets of Langerhans of pancreas. They make up 65-80% of the cells in the islets and produce insulin, a hormone that controls the level of glucose in the blood. It is known that type I diabetes results from the anatomical or functional loss of beta cells in pancreas. Regeneration or replacement of beta cells in diabetic patients is a very promising way to treat them. However, replacement of beta cells in diabetic patients is limited by the shortage of islet cells. If one can discover the mechanisms underlying formation of the endocrine pancreas, the development of such therapies will be accelerated. Previously, a novel gene, Endoderm Derived Factor (EDF), has been identified from a differential screening. This gene encodes a protein of ~70 kDa with a secretion signal peptide sequence at its N-terminus. When overexpressed in cultured cells, the EDF protein could be detected in the cultured medium, indicating that EDF is a secreted protein. Previous results also showed that EDF mRNA was expressed in pancreas and stomach from E9.5 to 11.5, and the expression was specifically restricted to the stomach in E12.5. Currently, our laboratory had generated anti-EDF antibody and several EDF transgenic mice line. We have generated transgenic mice in which the EDF coding sequence was placed under the control of the Pancreas Duodenum Homeobox-1 (PDX1) promoter. I have first confirmed the expression pattern of ectopic EDF was similar to the known expression pattern for PDX1. To further determine the functions of EDF during the development of pancreas, I analyzed the embryonic pancreas of EDF transgenic mice. I examined endocrine and exocrine cells using antibody staining against the acinar cell marker amylase and endocrine cell marker PTP-NP (protein tyrosine phosphatase - neural and pancreatic). However, I did not observe significant differences between EDF transgenic mice and their wild-type littermates in terms of the general morphology of their pancreas or the organization of the pancreatic endocrine and exocrine cells. I also did not detect alterations in glucose regulation in random-fed, fasted or glucose-challenged EDF transgenic mice. Further experiments are required to confirm the result. In the past, it was difficult to acquire large amounts of EDF recombinant protein. Therefore, I have generated an EDF fusion protein expression construct and utilized the recombinant Pichia strains (GS115, and KM71) to produce EDF fusion proteins. However, from yeast expression system, we obtained very little EDF protein. In mammalian cell system, we had improved the expression level of EDF protein with a modified expression protocol, and our result demonstrated that 5’UTR of EDF gene may play a role in regulating expression of EDF protein. And, I have generated recombinant bacmid contains the EDF gene and am ready to transfect insect cells to produce recombinant baculovirus.
Abstract (Chinese version)
Abstract (English version)
Chapter 1 Introduction and background……………………….......…1
1.1 Introduction to pancreatic structure……………………………………...…1
1.2 Diabetes mellitus……………………………………………………...…4
1.3 Morphological changes during pancreatic development…………………...…8
1.4 Signaling pathways and transcription factors involved in pancreas
development ………………………………………………………………9
1.5 Transcription factors important for pancreatic development …...……………10
1.6 Morphogen signaling in pancreas development……………………….……14
1.7 Research motive……………………………………………………..…17
Chapter 2 Materials and methods………………………………….…19
2.1 Gene expression constructs preparation………………………………...…19
2.2 In situ hybridization……………………………………………….……22
2.3 Recombinant protein expression (Yeast) ……………………………….…25
2.4 Generating EDF Recombinant bacmid (Baculovirus)………………………26
2.5 Cell Culture and transfection………………………………………….…26
2.6 Purification of EDF-myc/His Fusion Protein………………………………27
2.7 Immunoprecipitation……………………….………………………...…27
2.8 Western blot and coomassive blue staining……………………………...…28
2.9 Breeding, and genotyping of mice…………………………………….…29
2.10 Histology………………………………………………………..……29
2.11 Immunohistochemistry…………………………………………..……30
2.12 BrdU incorporation and histological staining…………………..…………30
2.13 Determination of blood glucose and Glucose tolerance testing………..……31
2.14 Animal models………………………………….………………..…31
Chapter 3 Result…………………………………………………….…32
3.1 Reconfirming the expression pattern of EDF in embryos of early developing
stages………………………………………………………………..……32
3.2 EDF is a secreted protein…………………………………………..……32
3.3 Ectopic EDF protein expression in pancreas of transgenic
mouse………………………………………………………………..…33
3.4 Blood glucose level of transgenic mice appear unaffected………………..…34
3.5 No significant differences in general morphology or organization of the pancreatic
cells between EDF transgenic mice and wild-type littermates……………...……34
3.6 Proliferation of the pancreatic cells between EDF transgenic mice and wild-type
littermates………………………………..…………………………...…35
3.7 Expression of Recombinant Pichia Strains……………………………...…35
3.8 Generating the EDF recombinant bacmid for recombinant protein expression
(Baculovirus)…………………………………………………………..…36
3.9 Expression of EDF protein in mammalian cell………………………...…36
Chapter 4 Discussion…………………………………………………..38
Chapter 5 Reference………………………………………………...…42
Chapter 6 Figures………………………………………………….…47
Appendix……………………………………………………………….60
Alberti, K. G. and Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15, 539-53.

Apelqvist, A., Li, H., Sommer, L., Beatus, P., Anderson, D. J., Honjo, T., Hrabe de Angelis, M., Lendahl, U. and Edlund, H. (1999). Notch signalling controls pancreatic cell differentiation. Nature 400, 877-81.

Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K. L. and Tzukerman, M. (2001). Insulin production by human embryonic stem cells. Diabetes 50, 1691-7.

Bottinger, E. P., Jakubczak, J. L., Roberts, I. S., Mumy, M., Hemmati, P., Bagnall, K., Merlino, G. and Wakefield, L. M. (1997). Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. EMBO J 16, 2621-33.

Buchanan, T. A., Xiang, A., Kjos, S. L., Lee, W. P., Trigo, E., Nader, I., Bergner, E. A., Palmer, J. P. and Peters, R. K. (1998). Gestational diabetes: antepartum characteristics that predict postpartum glucose intolerance and type 2 diabetes in Latino women. Diabetes 47, 1302-10.

Butler, A. E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A. and Butler, P. C. (2003). Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102-10.

Chiang, M. K. and Flanagan, J. G. (1996). PTP-NP, a new member of the receptor protein tyrosine phosphatase family, implicated in development of nervous system and pancreatic endocrine cells. Development 122, 2239-50.

Chiang, M. K. and Melton, D. A. (2003). Single-cell transcript analysis of pancreas development. Dev Cell 4, 383-93.


Dohrmann, C., Gruss, P. and Lemaire, L. (2000). Pax genes and the differentiation of hormone-producing endocrine cells in the pancreas. Mech Dev 92, 47-54.

Edlund, H. (1998). Transcribing pancreas. Diabetes 47, 1817-23.

Gradwohl, G., Dierich, A., LeMeur, M. and Guillemot, F. (2000). neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97, 1607-11.

Habener, J. F., Kemp, D. M. and Thomas, M. K. (2005). Minireview: transcriptional regulation in pancreatic development. Endocrinology 146, 1025-34.

Hebrok, M., Kim, S. K., St Jacques, B., McMahon, A. P. and Melton, D. A. (2000). Regulation of pancreas development by hedgehog signaling. Development 127, 4905-13.

Hellman, B., Gylfe, E., Grapengiesser, E., Dansk, H. and Salehi, A. (2007). [Insulin oscillations--clinically important rhythm. Antidiabetics should increase the pulsative component of the insulin release]. Lakartidningen 104, 2236-9.

Holland, A. M., Micallef, S. J., Li, X., Elefanty, A. G. and Stanley, E. G. (2006). A mouse carrying the green fluorescent protein gene targeted to the Pdx1 locus facilitates the study of pancreas development and function. Genesis 44, 304-7.

Iozzo, R. V. (1998). Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67, 609-52.

Iozzo, R. V. (1999). The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem 274, 18843-6.

Isenman, L., Liebow, C. and Rothman, S. (1999). The endocrine secretion of mammalian digestive enzymes by exocrine glands. Am J Physiol 276, E223-32.

Jiang, F. X. and Harrison, L. C. (2002). Extracellular signals and pancreatic beta-cell development: a brief review. Mol Med 8, 763-70.



Krapp, A., Knofler, M., Ledermann, B., Burki, K., Berney, C., Zoerkler, N., Hagenbuchle, O. and Wellauer, P. K. (1998). The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12, 3752-63.

Misra, S. P. and Dwivedi, M. (1990). Pancreaticobiliary ductal union. Gut 31, 1144-9.

Mochida, Y., Parisuthiman, D., Kaku, M., Hanai, J., Sukhatme, V. P. and Yamauchi, M. (2006). Nephrocan, a novel member of the small leucine-rich repeat protein family, is an inhibitor of transforming growth factor-beta signaling. J Biol Chem 281, 36044-51.

Nelson, S. B., Schaffer, A. E. and Sander, M. (2007). The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting beta-cell fate specification in Pdx1+ pancreatic progenitor cells. Development 134, 2491-500.

Offield, M. F., Jetton, T. L., Labosky, P. A., Ray, M., Stein, R. W., Magnuson, M. A., Hogan, B. L. and Wright, C. V. (1996). PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983-95.

Owens, M. D., Kieffer, E. C. and Chowdhury, F. M. (2006). Preconception care and women with or at risk for diabetes: implications for community intervention. Matern Child Health J 10, S137-41.

Percival, A. C. and Slack, J. M. (1999). Analysis of pancreatic development using a cell lineage label. Exp Cell Res 247, 123-32.

Perley, M. J. and Kipnis, D. M. (1967). Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects. J Clin Invest 46, 1954-62.

Petrucco, S., Wellauer, P. K. and Hagenbuchle, O. (1990). The DNA-binding activity of transcription factor PTF1 parallels the synthesis of pancreas-specific mRNAs during mouse development. Mol Cell Biol 10, 254-64.



Prado, C. L., Pugh-Bernard, A. E., Elghazi, L., Sosa-Pineda, B. and Sussel, L. (2004). Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci U S A 101, 2924-9.

Rindi, G., Torsello, A., Locatelli, V. and Solcia, E. (2004). Ghrelin expression and actions: a novel peptide for an old cell type of the diffuse endocrine system. Exp Biol Med (Maywood) 229, 1007-16.

Rodger, W. (1991a). Insulin-dependent (type I) diabetes mellitus. CMAJ 145, 1227-37.

Rodger, W. (1991b). Non-insulin-dependent (type II) diabetes mellitus. CMAJ 145, 1571-81.

Rother, K. I. (2007). Diabetes treatment--bridging the divide. N Engl J Med 356, 1499-501.

Sander, M., Sussel, L., Conners, J., Scheel, D., Kalamaras, J., Dela Cruz, F., Schwitzgebel, V., Hayes-Jordan, A. and German, M. (2000). Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 127, 5533-40.

Santra, M., Eichstetter, I. and Iozzo, R. V. (2000). An anti-oncogenic role for decorin. Down-regulation of ErbB2 leads to growth suppression and cytodifferentiation of mammary carcinoma cells. J Biol Chem 275, 35153-61.

Schwitzgebel, V. M., Scheel, D. W., Conners, J. R., Kalamaras, J., Lee, J. E., Anderson, D. J., Sussel, L., Johnson, J. D. and German, M. S. (2000). Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127, 3533-42.

Segev, H., Fishman, B., Ziskind, A., Shulman, M. and Itskovitz-Eldor, J. (2004). Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 22, 265-74.




Shapiro, A. M., Ricordi, C., Hering, B. J., Auchincloss, H., Lindblad, R., Robertson, R. P., Secchi, A., Brendel, M. D., Berney, T., Brennan, D. C. et al. (2006). International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355, 1318-30.

Slack, J. M. (1995). Developmental biology of the pancreas. Development 121, 1569-80.

Takeuchi, Y., Kodama, Y. and Matsumoto, T. (1994). Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity. J Biol Chem 269, 32634-8.

Tulachan, S. S., Tei, E., Hembree, M., Crisera, C., Prasadan, K., Koizumi, M., Shah, S., Guo, P., Bottinger, E. and Gittes, G. K. (2007). TGF-beta isoform signaling regulates secondary transition and mesenchymal-induced endocrine development in the embryonic mouse pancreas. Dev Biol 305, 508-21.

Vinik, A. I., Fishwick, D. T. and Pittenger, G. (2004). Advances in diabetes for the millennium: toward a cure for diabetes. MedGenMed 6, 12.

Wachstein, M. and Meisel, E. (1959). The histochemical demonstration of secretory capillaries in the pancreas with the aid of substrate specific phosphatases. J Biophys Biochem Cytol 6, 119-20.

Yasumizu, R., Sugiura, K., Iwai, H., Inaba, M., Makino, S., Ida, T., Imura, H., Hamashima, Y., Good, R. A. and Ikehara, S. (1987). Treatment of type 1 diabetes mellitus in non-obese diabetic mice by transplantation of allogeneic bone marrow and pancreatic tissue. Proc Natl Acad Sci U S A 84, 6555-7.

Zimmet, P., Alberti, K. G. and Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature 414, 782-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top