跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃朝偉
研究生(外文):Chao-Wei Huang
論文名稱:一維奈米碳簇材料之製備及其在能源上之應用
論文名稱(外文):Synthesis of One Dimensional Carbon Nanomaterials and Its Energy Applications
指導教授:李元堯李元堯引用關係
指導教授(外文):Yuan-Yao Li
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:163
中文關鍵詞:奈米碳纖維能源結構分析
外文關鍵詞:Carbon Nanomaterialstextureenergy storage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:523
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的為利用熱裂解高分子聚乙二醇與觸媒之混合物製備不同型態之一維奈米碳簇材料(平板型奈米碳纖維、孔洞型奈米碳纖維及竹結狀奈米碳纖維)及探討在能源上之應用。主要分為兩大部分:第一部分(第二章至第四章)主要為對所開發出之不同型態之一維奈米碳簇材料進行材料檢測及探討不同反應條件(溫度、觸媒)對生成一維奈米碳簇材料之影響;第二部份(第五章及第六章)主要為研究不同型態之ㄧ維奈米碳簇材料在能源上(氫氣儲存、超級電容器)之應用。
在一維奈米碳簇材料之製備方面,分別以鎳系及鐵系觸媒研究探討其對生成一維奈米碳簇材料之影響。在第二章及第四章中,主要以聚乙二醇及氯化鎳觸媒混合之前驅物進行熱裂解反應,由實驗結果發現,可以利用不同反應溫度合成不同型態之一維奈米碳簇材料(600oC迳孔洞型、750 oC迳平板型)。當反應溫度為750 oC,可以合成高純度、高石墨化且直徑小且均一(10-20 nm)之平板型奈米碳纖維;當反應溫度為600 oC,可以合成具有石墨化及中孔洞型態之孔洞型奈米碳纖維。不同型態之ㄧ維奈米線材經SEM、TEM及SAED分析檢測,可以發現因溫度不同,觸媒形狀及結晶性在不同溫度下有明顯的差異,由不規則且雙晶結構(600 oC)轉變為規則且單晶結構(750 oC)。因不同型態及結構之觸媒,對一維線材之型態及結構有重大的影響,因此我們可以在不同溫度合成不同型態之ㄧ維奈米線材;在第三章中,主要是以不同之鐵系觸媒與聚乙二醇混合之前驅物進行熱裂解反應,由實驗結果發現,以硫酸鐵為觸媒、反應溫度在750 oC及硫酸鐵與PEG混和物重量比為1:1000,可以合成短及彎曲之竹結狀奈米碳纖維,當觸媒與高分子比例過大或過小均不能生成一維奈米碳材。
在氫氣儲存的測試方面(第五章),主要是以平板型奈米碳纖維當作吸附材料,利用體積法檢測其儲氫量,由檢測結果得知,在壓力為4.83 MPa及溫度298 K,平板型奈米碳纖維的儲氫量為3.3 wt%,且經由XRD檢測分析,石墨層層間距在儲存氫氣前後有擴大及縮小之現象。
在超級電容器的應用方面(第六章),主要是以孔洞型奈米碳纖維基一般商業化奈米碳管當作電極材料進行有系統之材料結構與電化學行為檢測,由實驗結果得知,具有石墨化、中孔洞、較高表面積及氧官能基(C-OH, C=O及COOH)含量較多的孔洞型奈米碳纖維(Cs=98.4Fg−1, onset frequency=1.31 kHz)比一般商業奈米碳管(Cs =17.8Fg−1, onset frequency =1.01 kHz)擁有較佳的電容行為。
In this thesis, we prepared high purity and uniform one-dimensional carbon nanomaterials (platelet graphite nanofibers (PGNFs), carbon nanofibers (CNFs), and porous CNFs) from thermal decomposition of a mixture containing of polyethylene glycol (PEG) and catalyst. These carbon nanomaterials can be formed and tailored through suitable control of the synthetic conditions (temperature/catalyst). We also studied the structure of these materials and explored their applications. Fundamentals of one-dimensional carbon nanomaterials were reviewed in chapter 1. The structure of these carbon nanomatrials and their energy applications were systematically studied and reportrd in chapters 2–5, respectively.
In chapter 2, PGNFs with high purity, high degree of graphitization, and a uniform diameter of 10-20 nm were synthesized from thermal decomposition of a mixture containing of PEG and nickel chloride (NiCl2) at 750 oC under nitrogen atmosphere. Thermogravimetry-differential scanning calorimetry-mass spectrometry was employed to study the thermal decomposition phenomena of the mixture (PEG/NiCl2) before the thermal process. The analysis clarified the synthesis growth mechanism of PGNFs from the mixture.
In chapter 3, CNFs exhibiting bamboo-like, hollow fibril morphology were prepared from the mixture of PEG and iron-based compounds such as Fe2(SO4)3.nH2O, Fe(NO3).9H2O, or FeO(OH) by thermal process. CNFs can be formed with different PEG/catalyst ratios (100/1–1000/1) by weight at 750 oC. Catalyst effect was discussed for the formation of bamboo-like CNFs. The diameter of CNFs was about 30–50 nm while the length was a few micrometers.
In chapter 4, porous CNFs exhibited with mesopore, open edge, and graphitic structure were synthesized by thermal decomposition of PEG with the presence of nickel catalyst at 600 oC under nitrogen atmosphere. High purity of porous CNFs with a fiber diameter of 40–60 nm and a few micrometers in length can be synthesized on the wafer uniformly. Unlike the activation process of carbon fibers or template method to create pores, the mesopores of porous CNFs can be formed simultaneously while the fibers grew. Characterizations of porous CNFs found that, due to insufficient growth energy at 600 oC, the disordered graphene layers were generated from polycrystalline Ni catalysts and stacking of disorder graphene layers thereby created 4–¬6 nm mesopores with open edges. Porous CNFs with open edges, which are different from activated CNFs, were suggested to be a good medium for mass transport while graphene layers may serve as a good electrical conductive medium for the applications of electrode, catalyst supports, and adsorption.
In chapter 5, the hydrogen storage capacity of the PGNFs was measured using the volumetric method with the pressure up to 4.83 MPa at 298 K. The results show that the PGNFs possess a 3.3 wt% hydrogen storage capacity. X-ray diffraction analysis reveals that the d-spacing of graphene layers were expanded during hydrogen adsorption process and return back to the initial value after desorption of hydrogen.
In chapter 6, the textural and electrochemical properties of MCNFs were systematically compared with those of commercially available multi-walled carbon nanotubes (MWCNTs). The high ratio of mesopores and large amount of open edges of MCNFs with a higher specific surface area, very different from that of MWCNTs, are favorable for the penetration of electrolytes meanwhile the graphene layers of MCNFs serve as a good electronic conductive medium of electrons. The electrochemical properties of MCNFs and MWCNTs were characterized for the application of supercapacitors using cyclic voltammetry, galvanostatic charge–discharge method, and electrochemical impedance spectroscopic analyses. The MCNFs shows better capacitive performances (CS = 98.4 F g讣1 at 25 mV s讣1 and an onset frequency of behaving as a capacitor at 1.31 kHz) than that of MWCNTs (CS = 17.8 F g讣1 and an onset frequency at 1.01 kHz). This work demonstrates the promising capacitive properties of MCNFs for the application of electrochemical supercapacitors.
Contents
Abstract I
中文摘要 IV
Contents VI
List of Tables X
List of Figures XI
Chapter 1 Introduction 1
1.1 Brief history of one-dimensional carbon nanomaterials 1
1.2 Catalytic growth 4
1.3 Classification of carbon nanofilaments 13
1.4 Synthesis methods 18
1.5 Characteristics of CNFs 21
1.5.1 Adsorption characteristics 22
1.5.2 Density 26
1.5.3 Mechanical properties of CNFs 27
1.5.4. Electrical properties 28
1.6 Applications 31
1.6.1 Catalyst supports 31
1.6.2 Reinforcement 32
1.6.3 Lithium ion secondary batteries 34
1.6.4 Supercapacitor 36
1.6.5 Hydorgen storage 36
1.7 Objective and outlines 40
Chapter 2 In Situ Synthesis of Platelet Graphite Nanofibers from Thermal Decomposition of Poly(ethylene glycol) 41
2.1 Introduction of Graphite Nanofibers 41
2.2 Experimental 43
2.3 Results and Discussion 44
2.3.1 Thermal analysis of the Mixture (PEG-catalyst). 44
2.3.2 PGNFs Analysis. 47
2.4 Conclusion 54
Chapter 3 Synthesis of Carbon Nanofibers from a Liquid Solution Containing both Catalyst and Poly(ethylene glycol) 55
3.1 Introduction of CNTs/CNFs from polymer materials 55
3.2 Experimental 57
3.3 Results and discussion 58
3.3.1 Thermal analysis of PEG and the mixtures 58
3.3.2 The growth of CNFs 60
3.4 Conclusion 66
Chapter 4 Preparation and Characterization of Porous Carbon Nanofibers from Thermal Decomposition of Poly(ethylene glycol) 67
4.1 Introduction of Porous Carbon Materials 67
4.2 Experimental 69
4.3 Results and discussion 70
4.4. Conclusion 80
Chapter 5 Hydrogen Storage in Platelet Graphite Nanofibers 81
5.1 Introduction of Hydrogen Storage in Graphite Nanofibers 81
5.2. Experimental 84
5.3 Results and Discussion 86
5.3.1 Structural characteristics of the PGNFs 86
5.3.2 Hydrogen storage 88
5.3.3 XRD analysis 89
5.4. Conclusion 91
Chapter 6 Textural and Electrochemical Characterization of Porous Carbon Nanofibers as Electrodes for Supercapacitors 92
6.1 Introduction of One-dimensional Carbon Nanomaterials as Electrodes for Supercapacitors 92
6.2. Experimental 95
6.2.1 Preparation of porous CNFs 95
6.2.2 Electrochemical measurements 96
6.3 Results and discussion 98
6.3.1 Characterization of one dimension carbon nanomaterials 98
6.3.2 Electrochemical characterization 106
6.4 Conclusion 114
Chapter 7 Concluding Remarks 115
Reference 118
Appecdix 138
Publication list 146
Reference

1.Edison TA. Electric lamp. U.S. Patent. 223, 898, 1879.
2.Hughes TV, Chambers CR. Manufacture of carbon filaments. U.S. Patent. 405,480, 1889.
3.Iley R, Riley HL. The deposition of carbon on vitreous silica. Journal of the Chemical Society. 1948(SEP):1362-6.
4.Robertso.Sd. Graphite Formation from low temperature pyrolysis of methane over some transition metal surfaces. Nature. 1969;221(5185):1044-6.
5.Rostrupnielsen JR. Sulfur-passivated nickel-catalysts for carbon-free steam reforming of methane. Journal of Catalysis. 1984;85(1):31-43.
6.Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56-8.
7.Harris PJF. Carbon nanotubes and related structures: new materials for the 21st century. Cambridge, UK: Cambridge University Press 1999.
8.De Jong KP, Geus JW. Carbon nanofibers: Catalytic synthesis and applications. Catalysis Reviews-Science and Engineering. 2000;42(4):481-510.
9.Baker RTK. Carbon fibers, filaments and composites. Dordrecht: Kluwer 1990.
10.Baker RTK, Harries PS. Chemistry and physics of carbon. New York: Marcel Dekker 1978.
11.Baker RTK, Barber MA, Waite RJ, Harris PS, Feates FS. Nucleation and growth of carbon deposits from nickel catalyzed decomposition of acetylene. Journal of Catalysis. 1972;26(1):51-62.
12.Baker RTK, Chludzinski JJ. Filamentous Carbon growth on nickel-iron surfaces - the effect of various oxide additives. Journal of Catalysis. 1980;64(2):464-78.
13.Rostrup-Nielsen J. Equilibria of decomposition reactions of carbon-monoxide and methane over nickel catalysts. Journal of Catalysis. 1972;27(3):343-56.
14.Rostrup-Nielsen J, Trimm DL. Mechanisms of carbon formation on nickel-containing catalysts. Journal of Catalysis. 1977;48(1-3):155-65.
15.Oberlin A, Endo M, Koyama T. High-resolution electron-microscope observations of graphitized carbon-fibers. Carbon. 1976;14(2):133-5.
16.Oberlin A, Endo M, Koyama T. Filamentous Growth of carbon through benzene decomposition. Journal of Crystal Growth. 1976;32(3):335-49.
17.Baird T, Fryer JR, Grant B. Carbon formation on iron and nickel foils by hydrocarbon pyrolysis - reactions at 700 degreesc. Carbon. 1974;12(5):591-602.
18.Tibbetts GG. Vapor grown carbon-fibers - status and prospects. Carbon. 1989;27(5):745-7.
19.Baker RTK. Catalytic growth of carbon filaments. Carbon. 1989;27(3):315-23.
20.Alstrup I. A new model explaining carbon-filament growth on nickel, iron, and Ni-Cu alloy catalysts. Journal of Catalysis. 1988;109(2):241-51.
21.Audier M, Oberlin A, Coulon M. Crystallographic orientations of catalytic particles in filamentous carbon, case of simple conical particles. Journal of Crystal Growth. 1981;55(3):549-56.
22.Schouten FC, Kaleveld EW, Bootsma GA. Aes-Leed-Ellipsometry Study of kinetics of interaction of methane with Ni(110). Surface Science. 1977;63(1):460-74.
23.Schouten FC, Gijzeman OLJ, Bootsma GA. Interaction of methane with Ni(111) and Ni(100) - Diffusion of carbon into Nickel through the (100) surface - Aes-Leed Study. Surface Science. 1979;87(1):1-12.
24.Yang RT, Chen JP. Mechanism of carbon-filament growth on metal-catalysts. Journal of Catalysis. 1989;115(1):52-64.
25.Ting JM, Liu RM. Carbon nanowires with new microstructures. Carbon. 2003;41(3):601-3.
26.Baker RTK, Kim MS, Chambers A, Park C, Rodriguez NM. The relationship between metal particle morphology and the structural characteristics of carbon deposits. Catalyst Deactivation. 1997:99-109.
27.Zheng GB, Kouda K, Sano H, Uchiyama Y, Shi YF, Quan HJ. A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon. 2004;42(3):635-40.
28.Tavares MT, Bernardo CA, Alstrup I, Rostrupnielsen JR. Reactivity of carbon deposited on nickel copper alloy catalysts from the decomposition of methane. Journal of Catalysis. 1986;100(2):545-8.
29.Lee SH, Ruckenstein E. Simulation of the behavior of supported metal-catalysts in real reaction atmospheres by means of model catalysts. Journal of Catalysis. 1987;107(1):23-81.
30.Rodriguez NM, Chambers A, Baker RTK. Catalytic engineering of carbon nanostructures. Langmuir. 1995 Oct;11(10):3862-6.
31.Martin-Gullon I, Vera J, Conesa JA, Gonzalez JL, Merino C. Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon. 2006;44(8):1572-80.
32.Park C, Baker RTK. Catalytic behavior of graphite nanofiber supported nickel particles. 2. The influence of the nanofiber structure. Journal of Physical Chemistry B. 1998;102(26):5168-77.
33.Mukhopadhyay K, Porwal D, Lal D, Ram K, Mathur GN. Synthesis of coiled/straight carbon nanofibers by catalytic chemical vapor deposition. Carbon. 2004;42(15):3254-6.
34.Carneiro OC, Rodriguez NM, Baker RTK. Growth of carbon nanofibers from the iron-copper catalyzed decomposition of CO/C2H4/H-2 mixtures. Carbon. 2005;43(11):2389-96.
35.Tanaka A, Yoon SH, Mochida I. Preparation of highly crystalline nanofibers on Fe and Fe-Ni catalysts with a variety of graphene plane alignments. Carbon. 2004;42(3):591-7.
36.Krishnankutty N, Park C, Rodriguez NM, Baker RTK. The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene. Catalysis Today. 1997;37(3):295-307.
37.Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, et al. Microstructural changes induced in "stacked cup" carbon nanofibers by heat treatment. Carbon. 2003;41(10):1941-7.
38.Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, et al. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Applied Physics Letters. 2002;80(7):1267-9.
39.Kim YA, Hayashi T, Naokawa S, Yanaisawa T, Endo M. Comparative study of herringbone and stacked-cup carbon nanofibers. Carbon. 2005;43(14):3005-8.
40.Teo KBK, Singh C, Chhowalla M, Milne WI. Encyclopedia of nanoscience and nanotechnology. California: American Scientific Publishers 2003.
41.Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE. C-60 - Buckminsterfullerene. Nature. 1985;318(6042):162-3.
42.Murayama H, Maeda T. A novel form of filamentous graphite. Nature. 1990;345(6278):791-3.
43.Toebes ML, Bitter JH, van Dillen AJ, de Jong KP. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers. Catalysis Today. 2002;76(1):33-42.
44.Carneiro OC, Kim MS, Yim JB, Rodriguez NM, Baker RTK. Growth of graphite nanofibers from the iron-copper catalyzed decomposition of CO/H2 mixtures. Journal of Physical Chemistry B. 2003;107(18):4237-44.
45.Lim S, Yoon SH, Mochida I, Chi JH. Surface modification of carbon nanofiber with high degree of graphitization. Journal of Physical Chemistry B. 2004;108(5):1533-6.
46.Zheng RT, Zhao Y, Liu HP, Liang CL, Cheng GA. Preparation, characterization and growth mechanism of platelet carbon nanofibers. Carbon. 2006;44(4):742-6.
47.Rodriguez NM. A review of catalytically grown carbon nanofibers. Journal of Materials Research. 1993;8(12):3233-50.
48.Gregg SJ, Sing KSW. Adsorption, surface area and porosity, 2nd ed. London: Academic Press 1982.
49.Rodriguez NM, Kim MS, Downs WB, Baker RTK. Carbon fibers, filaments and composites. The Netherlands: Kluwer Academic Publishers 1987.
50.Owens WT, Rodriguez NM, Baker RTK. Effect of sulfur on the interaction of nickel with ethylene. Catalysis Today. 1994;21(1):3-22.
51.Meguro T, Torikai N, Watanabe N, Tomizuka I. Application of the Dubinin-Radushkevich equation to iodine adsorption by activated carbons from aqueous-solution. Carbon. 1985;23(2):137-40.
52.Rodriguez NM, Marsh H. Structure of coals studied by iodine and water-adsorption. Fuel. 1987;66(12):1727-32.
53.Baker RTK, Gadsby GR, Thomas RB, Waite RJ. Production and properties of filamentous carbon. Carbon. 1975;13(3):211-4.
54.van der Lee MK, van Dillen AJ, Geus JW, de Jong KP, Bitter JH. Catalytic growth of macroscopic carbon nanofiber bodies with high bulk density and high mechanical strength. Carbon. 2006;44(4):629-37.
55.Callister WDJ. Materials Science and engineering an introduction, 6th ed. New York: Wiley 2003.
56.Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science. 1997;277(5334):1971-5.
57.Dresselhaus MS, Dresselhaus G, Eklund PC. Science of fullerenes and carbon nanotubes. San Diego: Academic 1996.
58.Espinola A, Miguel PM, Salles MR, Pinto AR. Electrical-properties of carbons - resistance of powder materials. Carbon. 1986;24(3):337-41.
59.Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA. Graphite fibers and filaments. New York: Springer-Verlag 1988.
60.Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, et al. Vapor-grown carbon fibers (VGCFs) - Basic properties and their battery applications. Carbon. 2001;39(9):1287-97.
61.Lee SB, Teo KBK, Chhowalla M, Hasko DG, Amaratunga GAJ, Milne WI, et al. Study of multi-walled carbon nanotube structures fabricated by PMMA suspended dispersion. Microelectronic Engineering. 2002;61-2:475-83.
62.Schonenberger C, Bachtold A, Strunk C, Salvetat JP, Forro L. Interference and Interaction in multi-wall carbon nanotubes. Applied Physics a-Materials Science & Processing. 1999;69(3):283-95.
63.http://www.nanomirae.co.kr/eng/gnf/gnf_6.htm
64.Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Applied Catalysis a-General. 2003;253(2):337-58.
65.Rodriguez NM, Kim MS, Baker RTK. Carbon nanofibers - a unique catalyst support medium. Journal of Physical Chemistry. 1994;98(50):13108-11.
66.Park C, Baker RTK. Catalytic behavior of graphite nanofiber supported nickel particles. 3. The effect of chemical blocking on the performance of the system. Journal of Physical Chemistry B. 1999;103(13):2453-9.
67.Carneiro OC, Anderson PE, Rodriguez NM, Baker RTK. Decomposition of CO-H2 over graphite nanofiber-supported iron and iron-copper catalysts. Journal of Physical Chemistry B. 2004;108(35):13307-14.
68.Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R, et al. Application of carbon nanotubes as supports in heterogeneous Catalysis. Journal of the American Chemical Society. 1994;116(17):7935-6.
69.McKee DW, Mimeault VJ. Chemistry and physics of carbon. New York: Marcel Dekker 1973.
70.Delmonte J. Technology of carbon and graphite fiber composites. New York: Van Nostrand Reinhold Co. 1981.
71.Downs WB, Baker RTK. Novel Carbon Fiber-Carbon Filament Structures. Carbon. 1991;29(8):1173-9.
72.McAllister P, Wolf EE. Ni-catalyzed carbon infiltration of carbon-fiber substrates. Carbon. 1992;30(2):189-200.
73.Fitzer E. Carbon fibres and their composites. Berlin: Springer-Verlag 1985.
74.Chawla KK. Composite Materials. New York: Springer-Verlag 1987.
75.Jones BF, Duncan RG. Effect of fibre diameter on mechanical properties of graphite fibres manufactured form polyacrylonitrile and rayon. Journal of Materials Science. 1971;6(4):289-93.
76.Winter M, Besenhard JO, Spahr ME, Novak P. Insertion electrode materials for rechargeable lithium batteries. Advanced Materials. 1998;10(10):725-63.
77.Ogumi Z, Inaba M. Electrochemical lithium intercalation within carbonaceous materials: Intercalation processes, surface film formation, and lithium diffusion. Bulletin of the Chemical Society of Japan. 1998;71(3):521-34.
78.Doi T, Fukuda A, Iriyama Y, Abe T, Ogumi Z, Nakagawa K, et al. Low-temperature synthesis of graphitized nanofibers for reversible lithium-ion insertion/extraction. Electrochemistry Communications. 2005;7(1):10-3.
79.Gibaud A, Xue JS, Dahn JR. A small angle X-ray scattering study of carbons made from pyrolyzed sugar. Carbon. 1996;34(4):499-503.
80.Dahn JR, Zheng T, Liu YH, Xue JS. Mechanisms for lithium insertion in carbonaceous materials. Science. 1995;270(5236):590-3.
81.Dahn JR, Sleigh AK, Shi H, Way BM, Weydanz WJ, Reimers JN. Lithium batteries-New materials, development perspectives. London: Elsevier Science 1995.
82.Bueno PR, Leite ER. Nanostructured Li ion insertion electrodes. 1. Discussion on fast transport and short path for ion diffusion. Journal of Physical Chemistry B. 2003;107(34):8868-77.
83.Frackowiak E, Beguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon. 2002;40(10):1775-87.
84.Wu GT, Wang CS, Zhang XB, Yang HS, Qi ZF, He PM, et al. Structure and lithium insertion properties of carbon nanotubes. Journal of the Electrochemical Society. 1999;146(5):1696-701.
85.Zou GF, Zhang DW, Dong C, Li H, Xiong K, Fei LF, et al. Carbon nanofibers: Synthesis, characterization, and electrochemical properties. Carbon. 2006;44(5):828-32.
86.Yoon SH, Park CW, Yang HJ, Korai Y, Mochida I, Baker RTK, et al. Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries. Carbon. 2004;42(1):21-32.
87.Hacker V, Wallnofer E, Baumgartner W, Schaffer T, Besenhard JO, Schrottner H, et al. Carbon nanofiber-based active layers for fuel cell cathodes - preparation and characterization. Electrochemistry Communications. 2005;7(4):377-82.
88.http://www.gaston-narada.com/tech-certificates.html.
89.Posey FA, Morozumi T. Theory of potentiostatic and galvanostatic charging of double layer in porous electrodes. Journal of the Electrochemical Society. 1966;113(2P1):176-84.
90.Tiedemann W, Newman J. Double-layer capacity determination of porous-electrodes. Journal of the Electrochemical Society. 1975;122(1):70-4.
91.An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Advanced Functional Materials. 2001;11(5):387-92.
92.Hsieh CT, Lin YT. Synthesis of mesoporous carbon composite and its electric double-layer formation behavior. Microporous and Mesoporous Materials. 2006;93(1-3):232-9.
93.Tao XY, Zhang XB, Zhang L, Cheng JP, Liu F, Luo JH, et al. Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors. Carbon. 2006;44(8):1425-8.
94.Chambers A, Park C, Baker RTK, Rodriguez NM. Hydrogen storage in graphite nanofibers. Journal of Physical Chemistry B. 1998;102(22):4253-6.
95.Park C, Anderson PE, Chambers A, Tan CD, Hidalgo R, Rodriguez NM. Further studies of the interaction of hydrogen with graphite nanofibers. Journal of Physical Chemistry B. 1999;103(48):10572-81.
96.Rzepka M, Bauer E, Reichenauer G, Schliermann T, Bernhardt B, Bohmhammel K, et al. Hydrogen storage capacity of catalytically grown carbon nanofibers. Journal of Physical Chemistry B. 2005;109(31):14979-89.
97.Ahn CC, Ye Y, Ratnakumar BV, Witham C, Bowman RC, Fultz B. Hydrogen desorption and adsorption measurements on graphite nanofibers. Applied Physics Letters. 1998;73(23):3378-80.
98.Strobel R, Jorissen L, Schliermann T, Trapp V, Schutz W, Bohmhammel K, et al. Hydrogen adsorption on carbon materials. Journal of Power Sources. 1999;84(2):221-4.
99.Gupta BK, Srivastava ON. Synthesis and hydrogenation behaviour of graphitic nanofibres. International Journal of Hydrogen Energy. 2000;25(9):825-30.
100.Tibbetts GG, Meisner GP, Olk CH. Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon. 2001;39(15):2291-301.
101.Gupta BK, Srivastava ON. Further studies on microstructural characterization and hydrogenation behaviour of graphitic nanofibres. International Journal of Hydrogen Energy. 2001;26(8):857-62.
102.Poirier E, Chahine R, Bose TK. Hydrogen adsorption in carbon nanostructures. International Journal of Hydrogen Energy. 2001;26(8):831-5.
103.Browning DJ, Gerrard ML, Lakeman JB, Mellor IM, Mortimer RJ, Turpin MC. Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible reaction mechanism. Nano Letters. 2002;2(3):201-5.
104.Lueking AD, Yang RT, Rodriguez NM, Baker RTK. Hydrogen storage in graphite nanofibers: Effect of synthesis catalyst and pretreatment conditions. Langmuir. 2004;20(3):714-21.
105.Bououdina M, Grant D, Walker G. Synthesis and H2 adsorption on graphitic nanofibres. Journal of Alloys and Compounds. 2005;404:634-6.
106.Lueking AD, Pan L, Narayanan DL, Clifford CEB. Effect of expanded graphite lattice in exfoliated graphite nanoribers on hydrogen storage. Journal of Physical Chemistry B. 2005;109(26):12710-7.
107.Bessel CA, Laubernds K, Rodriguez NM, Baker RTK. Graphite nanofibers as an electrode for fuel cell applications. Journal of Physical Chemistry B. 2001;105(6):1115-8.
108.Matsumoto T, Mimura H. Point x-ray source using graphite nanofibers and its application to x-ray radiography. Applied Physics Letters. 2003;82(10):1637-9.
109.Yoon SH, Lim SY, Hong SH, Mochida I, An B, Yokogawa K. Carbon nano-rod as a structural unit of carbon nanofibers. Carbon. 2004;42(15):3087-95.
110.Cho WS, Hamada E, Kondo Y, Takayanagi K. Synthesis of carbon nanotubes from bulk polymer. Applied Physics Letters. 1996;69(2):278-9.
111.Kukovitskii EF, Chernozatonskii LA, Lvov SG, Melnik NN. Carbon nanotubes of polyethylene. Chemical Physics Letters. 1997;266(3-4):323-8.
112.Krivoruchko OP, Maksimova NI, Zaikovskii VI, Salanov AN. Study of multiwalled graphite nanotubes and filaments formation from carbonized products of polyvinyl alcohol via catalytic graphitization at 600-800 degrees C in nitrogen atmosphere. Carbon. 2000;38(7):1075-82.
113.Sarangi D, Godon C, Granier A, Moalic R, Goullet A, Turban G, et al. Carbon nanotubes and nanostructures grown from diamond-like carbon and polyethylene. Applied Physics a-Materials Science & Processing. 2001;73(6):765-8.
114.Hulicova D, Hosoi K, Kuroda S, Abe H, Oya A. Carbon nanotubes prepared by spinning and carbonizing fine core-shell polymer microspheres. Advanced Materials. 2002;14(6):452-5.
115.Li YY, Huang CW. U.S. Patent. 0115409 A1, 2006.
116.Huang CW, Hsu LC, Li YY. Synthesis of carbon nanofibres from a liquid solution containing both catalyst and polyethylene glycol. Nanotechnology. 2006;17(18):4629-34.
117.Madorsky SL, Straus S. Thermal degradation of polyethylene oxide and polypropylene oxide. Journal of Polymer Science. 1959;36(130):183-94.
118.Gogotsi YG, Nickel KG. Formation of filamentous carbon from paraformaldehyde under high temperatures and pressures. Carbon. 1998;36(7-8):937-42.
119.Marine J, Mering J. In Chemistry and Physics of Carbon. New York: Dekker 1971.
120.Lake M. Materials Technology. 1996;11:131.
121.Speck JS, Endo M, Dresselhaus MS. Structure and intercalation of thin benzene derived carbon-fibers. Journal of Crystal Growth. 1989;94(4):834-48.
122.Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 1938;60:309-19.
123.Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature. 1998;393(6680):49-52.
124.Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, et al. Individual single-wall carbon nanotubes as quantum wires. Nature. 1997;386(6624):474-7.
125.Deheer WA, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source. Science. 1995;270(5239):1179-80.
126.Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science. 1999;283(5401):512-4.
127.Lee NS, Chung DS, Han IT, Kang JH, Choi YS, Kim HY, et al. Application of carbon nanotubes to field emission displays. Diamond and Related Materials. 2001;10(2):265-70.
128.Kim P, Lieber CM. Nanotube nanotweezers. Science. 1999;286(5447):2148-50.
129.Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE. Nanotubes as nanoprobes in scanning probe microscopy. Nature. 1996;384(6605):147-50.
130.Cheung CL, Hafner JH, Odom TW, Kim K, Lieber CM. Growth and fabrication with single-walled carbon nanotube probe microscopy tips. Applied Physics Letters. 2000;76(21):3136-8.
131.Cheung CL, Hafner JH, Lieber CM. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(8):3809-13.
132.Endo M, Kim Y A, Matusita T, Hayashi T. Proceedings of the NATO advanced study institute on carbon filaments and nanotubes: Common Origins, Differing Applications Netherlands: Kluwer Academic Publishers 2001.
133.Merkulov VI, Lowndes DH, Wei YY, Eres G, Voelkl E. Patterned growth of individual and multiple vertically aligned carbon nanofibers. Applied Physics Letters. 2000;76(24):3555-7.
134.Maldonado S, Stevenson KJ. Direct preparation of carbon nanofiber electrodes via pyrolysis of iron(II) phthalocyanine: Electrocatalytic aspects for oxygen reduction. Journal of Physical Chemistry B. 2004;108(31):11375-83.
135.Sinnott SB, Andrews R. Carbon nanotubes: Synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences. 2001;26(3):145-249.
136.Su M, Zheng B, Liu J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chemical Physics Letters. 2000;322(5):321-6.
137.Li QW, Hao Y, Li XH, Zhang J, Liu ZF. High-density growth of single-wall carbon nanotubes on silicon by fabrication of nanosized catalyst thin films. Chemistry of Materials. 2002;14(10):4262-6.
138.Satishkumar BC, Govindaraj A, Sen R, Rao CNR. Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures. Chemical Physics Letters. 1998;293(1-2):47-52.
139.Dai H. Carbon nanotubes: synthesis, structure, properties and application. New York: Springer 2001.
140.Takenaka S, Ishida M, Serizawa M, Tanabe E, Otsuka K. Formation of carbon nanofibers and carbon nanotubes through methane decomposition over supported cobalt catalysts. Journal of Physical Chemistry B. 2004;108(31):11464-72.
141.Ando Y, Zhao X, Hirahara K, Suenaga K, Bandow S, Iijima S. Mass production of single-wall carbon nanotubes by the arc plasma jet method. Chemical Physics Letters. 2000;323(5-6):580-5.
142.Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters. 1999;313(1-2):91-7.
143.[Endo M, Kim YA, Muramatsu H, Yanagisawa T, Hayashi T, Dresselhaus MS. The large-scale production of fibrous carbons and their applications. New Diamond and Frontier Carbon Technology. 2004;14(1):1-10.
144.Libera J, Gogotsi Y. Hydrothermal synthesis of graphite tubes using Ni catalyst. Carbon. 2001;39(9):1307-18.
145.Saito Y, Yoshikawa T. Bamboo-shaped carbon tube filled partially with nickel. Journal of Crystal Growth. 1993;134(1-2):154-6.
146.Saito Y. Nanoparticles and filled nanocapsules. Carbon. 1995;33(7):979-88.
147.Kovalevski VV, Safronov AN. Pyrolysis of hollow carbons on melted catalyst. Carbon. 1998;36(7-8):963-8.
148.Wang XB, Hu WP, Liu YQ, Long CF, Xu Y, Zhou SQ, et al. Bamboo-like carbon nanotubes produced by pyrolysis of iron(II) phthalocyanine. Carbon. 2001;39(10):1533-6.
149.Lu Y, Zhu ZP, Su DS, Wang D, Liu ZY, Schlogl R. Formation of bamboo-shape carbon nanotubes by controlled rapid decomposition of picric acid. Carbon. 2004;42(15):3199-207.
150.Li DC, Dai LM, Huang SM, Mau AWH, Wang ZL. Structure and growth of aligned carbon nanotube films by pyrolysis. Chemical Physics Letters. 2000;316(5-6):349-55.
151.Lee CJ, Park J. Growth and structure of carbon nanotubes produced by thermal chemical vapor deposition. Carbon. 2001;39(12):1891-6.
152.Lee CJ, Park J. Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Applied Physics Letters. 2000;77(21):3397-9.
153.Li YD, Chen JL, Ma YM, Zhao JB, Qin YN, Chang L. Formation of bamboo-like nanocarbon and evidence for the quasi-liquid state of nanosized metal particles at moderate temperatures. Chemical Communications. 1999 (12):1141-2.
154.Katayama T, Araki H, Yoshino K. Multiwalled carbon nanotubes with bamboo-like structure and effects of heat treatment. Journal of Applied Physics. 2002;91(10):6675-8.
155.Murakami H, Hirakawa M, Tanaka C, Yamakawa H. Field emission from well-aligned, patterned, carbon nanotube emitters. Applied Physics Letters. 2000;76(13):1776-8.
156.Ma XC, Wang EG, Zhou WZ, Jefferson DA, Chen J, Deng SZ, et al. Polymerized carbon nanobells and their field-emission properties. Applied Physics Letters. 1999;75(20):3105-7.
157.Ma XC, Wang EG. CNx/carbon nanotube junctions synthesized by microwave chemical vapor deposition. Applied Physics Letters. 2001;78(7):978-80.
158.Okai M, Muneyoshi T, Yaguchi T, Sasaki S. Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Applied Physics Letters. 2000;77(21):3468-70.
159.Lin CH, Chang HL, Hsu CM, Lo AY, Kuo CT. The role of nitrogen in carbon nanotube formation. Diamond and Related Materials. 2003;12(10-11):1851-7.
160.Chang HL, Lin CH, Kuo CT. Field emission, structure, cathodoluminescence and formation studies of carbon and Si-C-N nanotubes. Diamond and Related Materials. 2002;11(3-6):793-8.
161.Chen LC, Wen CY, Liang CH, Hong WK, Chen KJ, Cheng HC, et al. Controlling steps during early stages of the aligned growth of carbon nanotubes using microwave plasma enhanced chemical vapor deposition. Advanced Functional Materials. 2002;12(10):687-92.
162.Bower C, Zhou O, Zhu W, Werder DJ, Jin SH. Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Applied Physics Letters. 2000;77(17):2767-9.
163.Tuinstra F, Koenig JL. Raman spectrum of graphite. Journal of Chemical Physics. 1970;53(3):1126-30.
164.Maurin G, Bousquet C, Henn F, Bernier P, Almairac R, Simon B. Electrochemical lithium intercalation into multiwall carbon nanotubes: a micro-Raman study. Solid State Ionics. 2000;136:1295-9.
165.Kasuya A, Sasaki Y, Saito Y, Tohji K, Nishina Y. Evidence for size-dependent discrete dispersions in single-wall nanotubes. Physical Review Letters. 1997;78(23):4434-7.
166.Wu XC, Tao YR, Lu YN, Dong L, Hu Z. High-pressure pyrolysis of melamine route to nitrogen-doped conical hollow and bamboo-like carbon nanotubes. Diamond and Related Materials. 2006;15(1):164-70.
167.Lu Y, Zhu ZP, Liu ZY. Catalytic growth of carbon nanotubes through CHNO explosive detonation. Carbon. 2004;42(2):361-70.
168.Fujita J, Ishida M, Ichihashi T, Ochiai Y, Kaito T, Matsui S. Carbon nanopillar laterally grown with electron beam-induced chemical vapor deposition. Journal of Vacuum Science & Technology B. 2003;21(6):2990-3.
169.Ichihashi T, Fujita J, Ishida M, Ochiai Y. In situ observation of carbon-nanopillar tubulization caused by liquidlike iron particles. Physical Review Letters. 2004;92(21):215702-1-4.
170.Ichihashi T, Ishida M, Ochiai Y, Fujita J. In situ observation of carbon-nanopi liar tubulization process. Journal of Vacuum Science & Technology B. 2004;22(6):3221-3.
171.Tibbetts GG, Bernardo CA, Gorkiewicz DW, Alig RL. Role of sulfur in the production of carbon-fibers in the vapor-phase. Carbon. 1994;32(4):569-76.
172.Li YY, Bae SD, Sakoda A, Suzuki M. Formation of vapor grown carbon fibers with sulfuric catalyst precursors and nitrogen as carrier gas. Carbon. 2001;39(1):91-100.
173.Ryoo R, Joo SH, Kruk M, Jaroniec M. Ordered mesoporous carbons. Advanced Materials. 2001;13(9):677-81.
174.Kim TW, Park IS, Ryoo R. A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. Angewandte Chemie-International Edition. 2003;42(36):4375-9.
175.Li ZL, Zhang J, Li Y, Guan YJ, Feng ZC, Li C. Preparation and characterization of ordered mesoporous carbons on SBA-15 template. Journal of Materials Chemistry. 2006;16(14):1350-4.
176.Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature. 2001;412(6843):169-72.
177.Zhou HS, Zhu SM, Honma I, Seki K. Methane gas storage in self-ordered mesoporous carbon (CMK-3). Chemical Physics Letters. 2004;396(4-6):252-5.
178.Vinu A, Ariga K, Mori T, Nakanishi T, Hishita S, Golberg D, et al. Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Advanced Materials. 2005;17(13):1648-52.
179.Lee J, Kim J, Lee Y, Yoon S, Oh SM, Hyeon T. Simple synthesis of uniform mesoporous carbons with diverse structures from mesostructured polymer/silica nanocomposites. Chemistry of Materials. 2004;16(17):3323-30.
180.Yang HF, Yan Y, Liu Y, Zhang FQ, Zhang RY, Meng Y, et al. A simple melt impregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches. Journal of Physical Chemistry B. 2004;108(45):17320-8.
181.Yang KS, Kim C, Park SH, Kim JH, Lee WJ. Fabrications and electrochemical properties of activated carbon nanofibers from electrospinning of various polymers. J Biomed Biotechnol. 2006;2(2):103-5.
182.Kim C. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. Journal of Power Sources. 2005;142(1-2):382-8.
183.Merino C, Soto P, Vilaplana-Ortego E, de Salazar JMG, Pico F, Rojo JM. Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors. Carbon. 2005;43(3):551-7.
184.Kim SU, Lee KH. Carbon nanofiber composites for the electrodes of electrochemical capacitors. Chemical Physics Letters. 2004;400(1-3):253-7.
185.Yoon SH, Lim S, Song Y, Ota Y, Qiao WM, Tanaka A, et al. KOH activation of carbon nanofibers. Carbon. 2004;42(8-9):1723-9.
186.Luxembourg D, Py X, Didion A, Gadiou R, Vix-Guterl C, Flamant G. Chemical activations of herringbone-type nanofibers. Microporous and Mesoporous Materials. 2007;98(1-3):123-31.
187.Lim S, Hong SH, Qiao WM, Whitehurst DD, Yoon SH, Mochida I, et al. Carbon nanofibers with radially oriented channels. Carbon. 2007;45(1):173-9.
188.Li P, Zhao TJ, Zhou JH, Sui ZJ, Dai YC, Yuan WK. Characterization of carbon nanofiber composites synthesized by shaping process. Carbon. 2005;43(13):2701-10.
189.Suzuki M. Activated carbon-fiber - fundamentals and applications. Carbon. 1994;32(4):577-86.
190.Li YY, Mochidzuki K, Sakoda A, Suzuki M. Activation studies of vapor-grown carbon fibers with supercritical fluids. Carbon. 2001;39(14):2143-50.
191.Gavalas VG, Chaniotakis NA, Gibson TD. Improved operational stability of biosensors based on enzyme-polyelectrolyte complex adsorbed into a porous carbon electrode. Biosensors & Bioelectronics. 1998;13(11):1205-11.
192.Sotiropoulou S, Gavalas V, Vamvakaki V, Chaniotakis NA. Novel carbon materials in biosensor systems. Biosensors & Bioelectronics. 2003;18(2-3):211-5.
193.Yoon S, Lee JW, Hyeon T, Oh SM. Electric double-layer capacitor performance of a new mesoporous carbon. Journal of the Electrochemical Society. 2000;147(7):2507-12.
194.Kim YJ, Horle Y, Matsuzawa Y, Ozaki S, Endo M, Dresselhaus MS. Structural features necessary to obtain a high specific capacitance in electric double layer capacitors. Carbon. 2004;42(12-13):2423-32.
195.Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances .1. Computations from nitrogen isotherms. Journal of the American Chemical Society. 1951;73(1):373-80.
196.Huang CW, Li YY. In situ synthesis of platelet graphite nanofibers from thermal decomposition of poly(ethylene glycol). Journal of Physical Chemistry B. 2006;110(46):23242-6.
197.Kim MS, Rodriguez NM, Baker RTK. The role of interfacial phenomena in the structure of carbon deposits. Journal of Catalysis. 1992;134(1):253-68.
198.Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure and Applied Chemistry. 1985;57(4):603-19.
199.Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation. Nature. 1992;359(6397):707-9.
200.Saito Y, Nishikubo K, Kawabata K, Matsumoto T. Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. Journal of Applied Physics. 1996;80(5):3062-7.
201.Liu TC, Li YY. Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method. Carbon. 2006;44(10):2045-50.
202.Krishnan A, Dujardin E, Treacy MMJ, Hugdahl J, Lynum S, Ebbesen TW. Graphitic cones and the nucleation of curved carbon surfaces. Nature. 1997;388(6641):451-4.
203.Gogotsi Y, Libera JA, Kalashnikov N, Yoshimura M. Graphite polyhedral crystals. Science. 2000;290(5490):317-20.
204.Bekyarova E, Murata K, Yudasaka M, Kasuya D, Iijima S, Tanaka H, et al. Single-wall nanostructured carbon for methane storage. Journal of Physical Chemistry B. 2003;107(20):4681-4.
205.Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, et al. Crystalline ropes of metallic carbon nanotubes. Science. 1996;273(5274):483-7.
206.Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science. 1998;282(5391):1105-7.
207.McMillan PF. New materials from high-pressure experiments. Nature Materials. 2002;1(1):19-25.
208.Boehm HP. Carbon from carbon-monoxide disproportionation on nickel and iron catalysts - morphological studies and possible growth mechanisms. Carbon. 1973;11(6):583-90.
209.Dresselhaus MS, Dresselhaus G. Intercalation compounds of graphite. Advances in Physics. 1981;30(2):139-326.
210.Fan YY, Liao B, Liu M, Wei YL, Lu MQ, Cheng HM. Hydrogen uptake in vapor-grown carbon nanofibers. Carbon. 1999;37(10):1649-52.
211.Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature. 1997;386(6623):377-9.
212.Shindo K, Kondo T, Arakawa M, Sakurai Y. Hydrogen adsorption/desorption properties of mechanically milled activated carbon. Journal of Alloys and Compounds. 2003;359:267-71.
213.Zuttel A, Sudan P, Mauron P, Wenger P. Model for the hydrogen adsorption on carbon nanostructures. Applied Physics a-Materials Science & Processing. 2004;78(7):941-6.
214.Conway BE. Electrochemical supercapacitors. New York: Kluwer-Plenum Publishing Co. 1999.
215.Burke A. Ultracapacitors: why, how, and where is the technology. Journal of Power Sources. 2000;91(1):37-50.
216.Nian YR, Teng HS. Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance. Journal of the Electrochemical Society. 2002;149(8):A1008-A14.
217.Kibi Y, Saito T, Kurata M, Tabuchi J, Ochi A. Fabrication of high-power electric double-layer capacitors. Journal of Power Sources. 1996;60(2):219-24.
218.Qu DY, Shi H. Studies of activated carbons used in double-layer capacitors. Journal of Power Sources. 1998;74(1):99-107.
219.Hu CC, Huang YH. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors. Journal of the Electrochemical Society. 1999;146(7):2465-71.
220.Hu CC, Chang KH. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors: effects of codepositing iridium oxide. Electrochimica Acta. 2000;45(17):2685-96.
221.Hu CC, Tsou TW. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochemistry Communications. 2002;4(2):105-9.
222.Kinoshita K. Carbon: electrochemical and physicochemical properties. New York: John Wiley & Sons 1988.
223.Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon. 2001;39(6):937-50.
224.Mayer ST, Pekala RW, Kaschmitter JL. The aerocapacitor-an electrochemical double-layer energy-storage device. Journal of the Electrochemical Society. 1993;140(2):446-51.
225.Tanahashi I, Yoshida A, Nishino A. Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors. Journal of the Electrochemical Society. 1990;137(10):3052-6.
226.Kastening B, Spinzig S. Electrochemical polarization of activated carbon and graphite powder suspensions .2. Exchange of ions between electrolyte and pores. Journal of Electroanalytical Chemistry. 1986;214(1-2):295-302.
227.Mitani S, Lee SI, Saito K, Korai Y, Mochida I. Contrast structure and EDLC performances of activated spherical carbons with medium and large surface areas. Electrochimica Acta. 2006;51(25):5487-93.
228.Bauer HH, Spritzer MS, Elving PJ. Double-layer capacity at a pyrolytic graphite disk electrode. Journal of Electroanalytical Chemistry. 1968;17(3-4):299-307.
229.Randin JP, Yeager E. Differential capacitance study of stress/annealed pyrolytic graphite electrodes. Journal of the Electrochemical Society. 1971;118(5):711-&.
230.Randin JP, Yeager E. Differential capacitance study on basal plane of stress-annealed pyrolytic-graphite. Journal of Electroanalytical Chemistry. 1972;36(2):257-&.
231.Randin JP, Yeager E. Differential Capacitance Study on Edge Orientation of pyrolytic-graphite and glassy carbon electrodes. Journal of Electroanalytical Chemistry. 1975;58(2):313-22.
232.Huang CW, Chiu SH, Lin WH, Li YY. Preparation and characterization of porous carbon nanofibers from thermal decomposition of poly(ethylene glycol). submitted.
233.Zhou JH, Sui ZJ, Zhu J, Li P, De C, Dai YC, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon. 2007;45(4):785-96.
234.Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, et al. Work functions and surface functional groups of multiwall carbon nanotubes. Journal of Physical Chemistry B. 1999;103(38):8116-21.
235.Pirlot C, Willems I, Fonseca A, Nagy JB, Delhalle J. Preparation and characterization of carbon nanotube/polyacrylonitrile composites. Advanced Engineering Materials. 2002;4(3):109-14.
236.Beamson G, Briggs D. High resolution XPS of organic polymers. Chichester: Wiley 1992.
237.Muller M, Kastening B. The double-layer of activated carbon electrodes .1. The contribution of ions in the pores. Journal of Electroanalytical Chemistry. 1994;374(1-2):149-58.
238.Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferraris JP. Conducting polymers as active materials in electrochemical capacitors. Journal of Power Sources. 1994;47(1-2):89-107.
239.Barbieri O, Hahn M, Herzog A, Kotz R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon. 2005;43(6):1303-10.
240.Weng TC, Teng HS. Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors. Journal of the Electrochemical Society. 2001;148(4):A368-A73.
241.Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, Shiraishi S, Kurihara H, Oya A. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon. 2003;41(9):1765-75.
242.Wu FC, Tseng RL, Hu CC, Wang CC. Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. Journal of Power Sources. 2005;144(1):302-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 王瑞邦(2013)。從「競爭」到「實驗」:論政府對公辦民營學校的政策思維。另類教育期刊,2,127-150。
2. 王素芸(2009)。協同教學的意義、特質與類型。教育研究與發展期刊,5(2),55-80。
3. 余嬪(2005)。工作趣味化:玩興管理的概念與方向。載於陳學志、王慶中(主編),笑話與幽默(頁73-94)。台北市:應用心理研究雜誌社。
4. 吳旻珊、吳宗立(2008)。高屏區國民小學組織文化特性與行政決策運作關係之研究。師資培育與教師專業發展期刊,1(1),1-24。
5. 李芝靜(2008)。中小學校長領導風格、組織文化與學校效能關聯性之研究,教育資料與研究,81,125-152。
6. 范慶鐘(2008)。一所參與教師專業發展評鑑試辦計畫學校的微觀政治學分析。教育科學期刊,7(2),45-67。
7. 范熾文、邱文貴(2008)。國民中小學校長推動公共關係之研究―以花蓮縣為例。學校行政雙月刊,56,124-139。
8. 陳幸仁(2007a)。微觀政治學:一個學校行政的新興研究領域。教育行政與評鑑學刊,3,67-86。
9. 陳幸仁(2007b)。組織結構與教師行動的辯證關係:以一所小學為例。彰化師大教育學報,12,103-128。
10. 陳幸仁(2008)。家長參與校務決策之微觀政治分析。國民教育研究學報,21,91-114。
11. 陳建銘(2013)。國民中小學學校組織同形化之探討。教師天地,187,70-76。
12. 麥錦雅(2010)。從Waldorf學校發展談桃園仁美華德福學校教育實踐。研習資訊,27(3),29-38。
13. 許清勇(2003)。學校組織文化與教師專業承諾之研究—以桃竹苗四縣市國民小學為例,新竹師院學報,17,1-22。
14. 黃騰、歐用生(2013)。教育如何超越新自由主義:課程公共性的觀點。另類教育期刊,2,1-24。
15. 馮朝霖(1994)。自我創化與教育--自我組織理論之教育學義涵初探。教育與心理研究,17,263-282。