跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林津華
研究生(外文):Jin-Hua Lin
論文名稱:Conjugation of viral peptide to improve the polymeric-mediated gene delivery
論文名稱(外文):Conjugation of viral peptide to improve the polymeric-mediated gene delivery
指導教授:程中玉
指導教授(外文):Jong-yuh Cherng
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:129
中文關鍵詞:基因載體細胞毒性轉染
外文關鍵詞:gene vectorcytotoxicitytransfection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:463
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的為設計及合成低毒性之生物可分解性的聚胺基甲酸酯高分子載體,而且將能促使細胞膜不穩定之病毒胜肽鏈進行化學鍵結,利用helix的胜肽鏈促使內質體膜的不穩定,藉此提高基因輸送的效果。
實驗內容包含了探討聚胺基甲酸酯高分子與DNA所形成的複合體之物理化學性質,如:電泳膠片分析、粒徑(DLS)、在仿生體液(HEPES)中裂解速率、緩衝能力、對哺乳類動物細胞毒性、及哺乳類動物細胞的轉染效率及其細胞內吞作用的路徑。
我們成它合成出在高分子主鏈及側鏈上帶有胺基的新型聚胺基甲酸酯(PU)系統,並在側鏈上進行置換不同的二胺類,包括了一級胺,三級胺等二胺類。來探討其側鏈種類、鏈長對轉染效率的影響。研究結果發現,此聚胺基甲酸酯在水溶液中具有非常好的溶解度,也可以快速的裂解,因此沒有明顯細胞毒性,其中PU-PA-1、 PU-PA-3、PU-PA-1-peptide適當的重量比之下,可以有效地保護質體DNA,並且能夠在48小時內成它a轉染哺乳類動物細胞,加入病毒胜肽鍵的PU-PA-1-peptide對於COS-7細胞其最佳轉染效率能高於PDMAEMA的表現。
The goal of this project is to design and synthesize biodegradable cationic polyurethanes with low Cytotoxicity. A membrane-disrupting peptide derived from the influenza virus was covalently linked to the cationic polyurethane to increase the transfection efficiency of PU-based gene delivery systems.
The cationic polyurethane/plasmid DNA complexes were characterized for their physical and chemical properties,by examining their electrophoresis mobility on agarose gel,particle size (DLS),the hydrolytic degradation, buffering capacity,cytotoxicity,transfection efficiency,and possible endocytosis pathways.
In our study, a series of cationic polyurethane with various structures in side chain has been systemic investigated. These side chains (primary amine or tertiary amine) would carry positive charges so that the relations of different amines and length of side chains with transfection activity of polyurethane can be studied. Results show that these cationic cationic polyurethanes are able to transfect mammalian cells with advantageous properties of low cytotoxicity, water solubility and biodegradability in water after 48 hours.
總目錄
總目錄 -------------------------------------------------------------------- III
中文摘要---------------------------------------------------------------------I
英文摘要-------------------------------------------------------------------- II
圖表目錄 --------------------------------------------------------------------VI
縮寫表 ----------------------------------------------------------------------X
第一章 緒論 ---------------------------------------------------------------- 1
1.1、 引言 -------------------------------------------------------------------1
1.1.1、 基因治療背景與發展--------------------------------------------1
1.2、基因遞送系統------------------------------------------------------------5
1.2.1、 病毒性載體 -----------------------------------------------------5
1.2.2、 非病毒性載體 ---------------------------------------------------- 9
1.3、基因轉殖的機制與障礙因素 ---------------------------------------- 19
1.3.1、標的細胞之再吸收 --------------------------------------------- 19
1.3.2、內質體之釋放 --------------------------------------------------- 20
1.3.3、在細胞質中安定性與細胞核輸入 --------------------------- 21
1.4、生醫材料 ------------------------------------------------------------- 21
1.4.1、生物可分解性高分子 ------------------------------------------ 21
1.4.2、異氰酸酯化學反應 --------------------------------------------- 29
1.5、質體DNA --------------------------------------------------------------- 32
1.6、研究動機 --------------------------------------------------------------34
第二章 實驗材料------------------------------------------------------------ 37
2.1、實驗儀器 ------------------------------------------------------------32
2.2、實驗藥品------------------------------------------------------------- 39
2.3、實驗方法--------------------------------------------------------------41
2.3.1、質體DNA的製備 ---------------------------------------------- 41
2.3.2、細胞株 ------------------------------------------------------------ 45
2.3.3、實驗方法流程圖-------------------------------------------------- 48
2.3.4、電泳實驗 --------------------------------------------------------- 57
2.3.5、測定高分子分子量 --------------------------------------------- 60
2.3.6、測定粒徑大小 --------------------------------------------------- 61
2.3.7、測定緩衝能力 --------------------------------------------------- 62
2.3.8、細胞毒性分析 --------------------------------------------------- 63
2.3.9、細胞轉染實驗 --------------------------------------------------- 65
2.3.10、細胞內吞的路徑分析-------------------------------------69
第三章 結果與討論 ------------------------------------------------------- 72
3.1、聚胺基甲酸酯高分子的分子量探討 -------------------------------- 72
3.2、高分子與質體DNA形成複合體的能力 --------------------------- 73
3.2.1、 PU-1、PA、PU-PA、PU-PA-1高分子對質體DNA進行包覆的效---------------73
3.2.2、PU-3、PU-PA-3高分子對質體DNA進行包覆的效率----- 75
3.2.3、PU-1-peptide、PU-PA-1-peptide高分子對質體DNA進行包覆的效率------- 77
3.2.4、PU-PA-1,PU-PA-1-peptide高分子的水解能力-------------- 78
3.3、粒徑大小分析與測定 --------------------------------------------------- 81
3.4、高分子的酸鹼滴定—探討高分子的緩衝能力 -------------------- 86
3.5、高分子對細胞毒性大小測試 ----------------------------------------- 90
3.6、細胞轉染實驗--------------------------------------------------------- 94
3.7、探討細胞內吞作用的路徑實驗--------------------------------------- 100
第四章 結論 ------------------------------------------------------------- 103
4.1、聚胺基甲酸酯結構之特性 ------------------------------------- 103
4.2、 聚胺基甲酸酯之分子量 --------------------------------------- 103
4.3、聚胺基甲酸酯之緩衝能力 ------------------------------------- 104
4.4、聚胺基甲酸酯之細胞毒性 ------------------------------------- 106
4.5、總結 ------------------------------------------------------------ 106
第五章 結構圖譜鑑定 ---------------------------------------------------- 108
參考文獻 ------------------------------------------------------------------ 118

圖表目錄
表1.1、適用於基因治療的一些遺傳性疾病-------------------------------- 3
表1.2、病毒性載體內的片段的胜肽------------------------------------------ 7
圖1.3、通常基因轉染進入細胞的方法------------------------------------- 10
圖1.4、微注射(microinjection)的轉染方式--------------------------------- 11
圖1.5、微脂粒與細胞膜間的相互作用------------------------------------- 14
圖1.6、目前常見的四種陽離子型高分子系統---------------------------- 16
圖1.7、質子海綿體效應------------------------------------------------------- 18
圖1.8、陽離子型載體的轉染機制------------------------------------------- 19
圖1.9、pCMV-LacZ 質體 DNA的圖譜------------------------------------ 34
圖1.10、胜肽鏈在正常pH值的狀態下會因電荷的排斥形成隨機的捲曲狀態,然而在較低的pH值下,由於質子化的反應使的胜肽形成兩極化的?陰蛣硎c------------------ 35
表 2.1、Luria Broth 的組成 ------------------------------------------------- 41
表 2.2、QIAGEN plasmid mega kit -------------------------------------- 44
圖 2.1、COS-7 細胞生長情形 -------------------------------------------- 45
圖2.2、聚胺基甲酸酯高分子(PU)的合成 --------------------------- 50
圖2-3、側鏈帶有一級胺類的PU-1、PU-PA-1 ----------------------------- 52
圖2.4、側鏈帶有三級胺類的PU-3、PU-PA-3 ----------------------------- 54
圖2.5、含胺基酸化合物化合物Inf7的PU-1-peptide、PU-PA-1-peptide ------------ 56
圖2.6、螢光化合物 ethidiumbromide 的化學結構式------------------ 58
圖2.7、XTT的化學結構式 ------------------------------------------------- 63
圖2.8、XTT在細胞中反應形成formazan鹽類---------------------------- 64
表 2.3、XTT試劑的組成------------------------------------------------------ 65
圖2.9、細胞胞飲的三種抑制路徑------------------------------------------- 69
表 3.1、聚胺基甲酸酯分子量及多分佈指數之數據 -------------------- 72
圖3.1、PU-1、PA、PU-PA、PU-PA-1高分子與質體DNA形成複合體的包覆能力---------- 73
圖3.2、PU-3、PU-PA-3高分子與質體DNA形成複合體的包覆能力--------------------- 75
圖3.3、PU-1-peptide、PU-PA-1-peptide高分子與質體DNA形成複合體的包覆能力----- 77
圖3.4、PU-PA-1、PU-PA-1-peptide高分子與質體DNA形成複合體的水解能力------- 78
圖3.5、PU-1、PU-PA-1、PA、PU-PA、PU-3、PU-PA-3在不同濃度比例下與DNA形成複合體的粒徑大小分佈------------------- 81
圖3.6、PU-1、PU-1-peptide在不同濃度比例下與DNA形成複合體的粒徑大小分佈----- 82
圖3.7、PU-PA-1、PU-PA-1-peptide在不同濃度比例下與DNA形成複合體的粒徑大小分佈 84
圖3.8、不同側鏈的陽離子型高分子聚胺基甲酸酯在酸滴定下
的緩衝能力曲線-------------------------------------------------------- 86
圖3.9、PU-1、PU-1-peptide的陽離子型高分子聚胺基甲酸酯在酸滴
定下的緩衝能力曲線---------------------------------------------- 88
圖3.10、PU-PA-1、PU-PA-1-peptide的陽離子型高分子聚胺基甲
酸酯在酸滴定下的緩衝能力曲線------------------------------- 89
圖3.11、高分子細胞毒性分析針對PU-1、 PU-PA-1、PU-PA-3、PU-PA-3在不同濃度比例下,其對細胞的毒性大小測試-------------- 90
圖3.12、高分子細胞毒性分析針對PU-1、 PU-1-peptide、 PU-PA-1、PU-PA-1-peptide在不同濃度比例下,其對細胞的毒性大小測試--------------------------------- 91
圖3.13、PU-1、PU-PA-1、PU-3、PU-PA-3等PU系統以不同的濃度比例進行細胞轉染實驗 94
圖3.14、PU-1、PU- 1-peptide以不同的濃度比例進行細胞轉染實驗------------- 97
圖3.15、PU-PA-1、PU- PA-1-peptide以不同的濃度比例進行細胞轉染實驗----------- 98
圖3.16、使用X-gal染色法觀察受到 PEI 、PDMAEMA、PU-PA-1-peptide轉染的細胞數目 99
圖3.17、PEI 、PDMAEMA、PU-PA-1-peptide轉染的COS-7細胞,經過X-gal染色後的情形-------------------------------------- 100
圖3.18、 PU-PA-1、PU-PA-3、PU-PA-1-peptide轉染效率圖----------- 100

縮寫表

PU Polyurethane
PA Poly-L-arginine
PAA Poly(amido amine)
PLL Poly-L-Lysine
PEI Polyethylenimine
PDMAEMA Poly(N,N-dimethylaminoethyl methacrylate)
PBS Phosphate buffer saline
SPDP 3-(2-Pyridyldithio)propionic acid
N-hydroxysuccinimide ester
Inf7 “N”-GLF EAI EGFI ENGW EGMI DGWYGC-NH2 - “C”
DTT Dithiothreitol
EDTA Ethylenediaminetetraacetates
FTIR Fourier Transform Infrared Spectroscopy
NMR Nuclear Magnetic Resonance
GPC Gel permeation chromatography
1.Dalgleish AG. Why gene therapy? Gene Ther. 1997, 4, 629-630.
2.Lehrman S. Virus treatment questioned after gene therapy death. Nature. 1999, 401, 517-518.
3.Kukowska-Latallo JF. Intravascular and endobronchial DNA delivery to murine lung tissue using a novl, non-viral vector. Hum Gene Ther. 2000, 11, 1385-1395.
4.Choksakulnimitr S, Masuda S, Tokuda H, Hashida M. In vitro cytotoxicity of macromolecules in different cell culture systems. J Controlled Rel. 1995, 34, 233-241.
5.Hickman MA, Malone RW, Lehmann-Buinsma K. Gene expression following direct injection of DNA into liver. Hum Gene Ther. 1994, 5, 1477-1483.
6.Schwartz B, Benoist C, Abdallah B. Gene transfer by naked DNA into adult mouse brain. Gene Ther. 1996, 3, 405-411.
7.Nakanish M. Gene introduction into animal tissues. Crit Rev Ther Drug Carr Syst. 1995, 12, 263-310.
8.Felgner P. Particulate systems and polymers for in vitro and in vivo delivery of polynucleotides. Adv Drug Deliv Rev. 1990, 5, 163-187.
9.C. Plank, B. Oberhauser, K. Mechtler, C. Koch, E. Wagner, The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems, J. Biol. Chem. 1994, 269, 12918–12924.
10.Anderson WF. Human gene therapy. Science. 1992, 256, 808-813.
11.Welsh RM, Cooper NR, Jensen FC. Human serum lyses RNA tumor viruses. Nature. 1975, 257, 612-614.
12.Bett AJ, Prevec L, Graham FL. Packaging capacity and stability of human adenovirus type 5 vectors. J .Vitro. 1993, 67, 5911-5921.
13.McCoy RD, Davidson BL, Roessler BJ, et al. Pulmonary inflammation induced by incomplete or inactivated adenoviral particles. Hum Gene Ther. 1995, 6, 1533-1560.
14.Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol. 1992, 158, 97-129.
15.Atchison RW, Casto BC. Adenovirus-associated defective virus particles. Science. 1965, 149, 754-756.
16.Podsakoff G, Wong J. K, Chatterjee S, Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J Vitro. 1994, 68, 5656-5666.
17.Carter BJ. Molecular structure of adeno-associated virus variant DNA. J Biol Chem. 1980, 255, 3194-3203.
18.Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol. 2000, 18, 33-37.
19.Budker V, Zhang G, Knechtle S, Wolff JA. Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med. 2000, 2, 76-88.
20.Liu F, Huang L. Noninvasive gene delivery to the liver by mechanical massage. Hepatology. 2002, 35, 1314-1319.
21.Yang NS, Burkholder J, Roberts B, Martinell B, Mc Cabe D. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA. 1990, 87, 9568-9572.
22.Yang NS, Sun WH. Gene gun and other nonviral approaches for cancer gene-therapy. Nat Med. 1995, 1, 481-483.
23.Ye GN, Daniell H, Sanford JC. Optimization of delivery of foreign DNA into higher-plant chloroplasts. Plant Mol Biol. 1990, 15, 809-819.
24.Song J, Chappell JC, Qi M, VanGieson EJ, Kaul S, Price RJ. Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle. J Am Coll Cardiol. 2002, 39, 726-731.
25.Shohet RV, Chen S, Zhou YT, Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation. 2000, 101, 2554-2556.
26.Endoh M. Fetal Gene Transfer by intrauterine injection with microbubble- enhanced ultrasound. Mol Ther. 2002, 5, 501-508.
27.Alam J, Cook JL. Reporter genes: Application to the study of mammalian gene transcription. Anal Biochem. 1990, 188, 245-254.
28.Norton PA, Coffin JM. Bacterial beta-galactosidase as a marker of Rous sarcoma virus gene expression and replication. Mol Cell Biol. 1985, 5, 281-290.
29.Bloomfield VA. Condensation of DNA by multivalent cations: Considerations on mechanism. Biopolymers. 1991, 31, 1471-1481.
30.Pouton CW, Lucas P, Thomas BJ, Uduehi AN, Milroy DA, Moss SH. Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. J Controlled Rel. 1998, 53, 289-299.
31.Fisher KD, Ulbrich K, Subr V, A versatile system for receptor-mediated gene delivery permits increased entry of DNA into target cells, enhanced delivery to the nucleus and elevated rates of transgene expression. Gene Ther. 2000, 7, 1337-1343.
32.Remy JS, Kichler A, Mordvinov V, Schuber F, Behr JP. Targeted gene transfer into Hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses. Proc Natl Acad Sci USA. 1995, 92, 1744-1748 .
33.Wanger E. Application of membrane-active peptides for nonviral gene delivery. Adv Drug Deliv Rev. 1998, 38, 279-289.
34.Mechtler K, Wanger E. Gene transfer mediated by influenza virus peptides: the role of peptide sequences. New J Chem. 1997, 21, 105-111.
35.Xu Y, Szoka FC. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996, 35, 5616-5623.
36.Sebestyen MG, Ludtke JJ, BAssik MC. DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat Biotechnol. 1998, 16, 80-85.
37.Aronsohn AI, Hughes JA. Nuclear localisation signal peptides enhance cationic liposome-mediated gene therapy. J Drug Target. 1997, 5, 163-169.
38.Behr JP. The proton sponge: a trick to enter cells the viruses did not exploit. Chimia. 1997, 51, 34-36.
39.Tanzawa H. Biomedical polymers: current status and overview in biomedical applications of polymeric materials. CRC Press Boca Raton. 1993, 52, 45-55.
40.Lynn DM, Langer R. Degradable poly(β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc. 2000, 122, 10761-10768.
41.Torimoto T, Reyes JP, Iwasaki K, et al. Preparation of novel silica-cadmium sulfide composite nanoparticles having adjustable void space by size- selective photoetching. J Am Chem Soc. 2003, 125, 316-5323.
42.Lim Y, Kim K, Kim SW, Park J. Development of a safe gene delivery system using biodegradable polymer: poly[?(4-aminobutyl)-L-glycolic acid]. J Am Chem Soc. 2000, 122, 6524-6525.
43.Putnam D, Langer R. Poly(4-hydroxy-L-proline ester): low-temperature polycondensation and plasmid DNA complexation. Macromolecules. 1999, 32, 3658-3662.
44.Lim Y, Han S, Kong H, et al. Biodegradable polyester, poly[ ?(4-aminobutyl)-L-glycolic acid ], as a non-toxic gene carrier. Pharm Res. 2000, 17, 811-816.
45.Wang J, Mao HQ, Leong KW. A novel biodegradable gene carrier based on polyphosphoester. J Am Chem Soc. 2001, 123, 9480-9481.
46.MacLaughlin FC, Mumper RJ, Wang J, et al. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Controlled Rel. 1998, 56, 259-272.
47.Lee M, Nah JW, Kwon Y, Koh JJ, Ko KS, Kim SW. Water-soluble and low molecular weight chitosan-based plasmid DNA delivery. Pharm Res. 2001, 18, 427-431.
48.Lee KY, Kown IC, Kim YH, Jo WH, Jeong SY. Preparation of chitosan self-aggregates as a gene delivery system. J Controlled Rel. 1998, 51, 213-220.
49.Hsu YY, Hao T, Hedley ML. microencapsulation of plasmid DNA in poly(d,L-lactic-co-glycolic) acid microspheres. J Drug Target. 1999, 7, 313-323.
50.Charnley J. Total hip replacement by low-friction arthroplasty. J bone joint surg. 1960, 42B, 28.
51.Maheshwari A. Soluble biodegradable polymer-based cytokine gene delivery for cancer treatment. Mol Ther. 2000, 2, 121-130.
52.Varum KM, Holme HK, Izume M, Stokke BT, Smidsrod O. Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans. Biochim Biophys Acta. 1996, 1291, 5-15.
53.Carreno-Gomez B, Duncan R. Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int J Pharm. 1997, 148, 231-240.
54.Kulkarni RK, Moore EG, Hegyelli AF, Leonard F. Viable prosthetic interface. J Biomed Mater Res. 1971, 5, 169-178.
55.Wang D, Robinson DR, Kwon GS, Samuel J. Encapsulation of plasmid DNA in biodegradable poly(D,L-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J Controlled Rel. 1999, 57, 9-18.
56.Capan Y, Woo BH, Gebrekidan S, Ahmed S, DeLuca PP. Preparation and characterization of poly(D,L-lactide-co-glycolide) microspheres for controlled release of poly(L-lysine) complexed plasmid DNA. Pharm Res. 1999, 16, 509-513.
57.Maruyama A, Ishihara T, Kim JS, Kim SW, Akaike T. Nanoparticle DNA carrier with poly(L-lysine) grafted polysaccharide copolymer and poly- (D,L-lactic acid). Bioconjugate Chem. 1997, 8, 735-742.
58.Lelah MD, Cooper SL. Polyurethanes in medicine. CRC Press Boca Raton. 1986, 34, 1-4.
59.Boretos JW. The chemistry and biocompatibility of specific polyurethanes systems for medical use in biocompatibility of clinical imoplant materials. CRC Press Boca Raton. 1981, 17, 539-555.
60.Boretos JW, Pierice WS. Segmented polyurethane: a new elastomer for biomedical applications. Science. 1967, 158, 1481-1482.
61.Zdrahala RJ, Zdrahala IJ. Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl. 1999, 14, 67-70.
62.King MW, Zhang Z, Ukpabi P, Murphy D, Guidoin R. Quantitative analysis of the surface morphology and textile structure of the Polyurethane Vascugraft® arterial prosthesis using image and statistical analyses. Biomaterials. 1994, 15, 621-627.
63.Saunders JH, Frisch KC. Polyurethane chemistry and technology: part I. chemistry. Interscience New York. 1962, 3, 12-18.
64.Pinchuk L. A review of the biostability and carcinogenicity of polyurethane. J Biomater Sci Polymer Edn. 1994, 6, 225-267.
65.Yang TF, Chin WK, Cherng JY, Shau MD. Synthesis of novel biodegradable cationic polymer: N, N-diethylethylenediamine polyurethane as a gene carrier. Biomacromolecules. 2004, 5, 1926-1932.
66.Hansma HG, Golan R, Hsief W, Lollo CP, Ley PM, Kowh D. DNA condensation for gene therapy as monitored by atomic force microscopy. Nucleic acids Res USA. 1998, 26, 2481-2487.
67.MacGregor GR, Mogg AE, Burke JF, Caskey CT. Histochemical staining of clonal mammalian cell lines expressing E. coli beta galactosidase indicates heterogeneous expression of the bacterial gene. Smoat Cell Mol Genet. 1987, 13, 253-265.
68.Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 1996, 173, 33-38.
69. Mehrdad M, Nasser SS. Preparation of new biodegradable polyurethanes as a therapeutic agent. Polymer degradation and stability. 2003, 80, 199-202.
70. Daan J.A. Crommelin, Wim E. Hennink. Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors.Journal of Controlled Release 2005, 101, 233–246
71. Vijayanathan V, Thomas T, Thomas T. DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry. 2002, 41, 14085-14094.
72. Gebhart CL, Kabanov AV. Evaluation of polyplexes as gene transfer agents. J Controlled Rel. 2001, 73, 401-416.
73. Schaffer DV, Fidelman NA, Dan N, Lauffenburger DA. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnology and Bioengineering. 1999, 67, 598-606.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 胡夢鯨,吳宗雄,蕭佳純(2003)。成人教育工作者知識管理核心能力指標建構之研究。教育學刊,27,21-50。
2. 李芝靜(2003)。學習型組織導向的中、小學校長領導風格及組織文化自評量表建構之研究。教育研究資訊,11(6),103-133。
3. 吳萬益(1996)。中美日在台企業經營環境,組織結構及策略運作互動關係之研究。管理科學學報,13(1),1-19。
4. 王精文、蕭婉鎔(2004)。建構學習型組織與組織績效關係之研究。人力資源管理學報,4(4),29-49。
5. 孫瑞霙(2001)。領導型態與領導績效之探討—學校與企業之比較研究。人力資源管理學報,1(3),107-130。
6. 連雅慧(2002)。學習型組織構面與組織績效—以台灣一科技公司為例。商管科技季刊,3(4),337-358。
7. 郭維哲(2006)。學校行銷與組織績效關係之研究:以組織結構為干擾變項。新竹教育大學學報,22,25-56。
8. 陳銘薰、郭莉真(2004)。策略領導對組織績效之影響-以學習型組織為中介變數,企業管理學報,63,27-66。
9. 黃月純(2001)。學習型學校之相關論點與實例探討。教育政策論壇,4(2),99-124。
10. 黃富順(1999)。學習社會的意義、特性與實施。成人教育,47 ,6-13。
11. 楊仁壽、王思峰(2002)。三種組織學習的類型與其介入模式。商管科技季刊,3(4),249-274。
12. 雷漢聲、高家斌(2005)。環境變數對非營利組織市場導向程度與組織績效關係干擾影響之研究—以企業文教基金會為例。商管科技季刊,6(2)。211-239。
13. 鍾瑞國、鄭曜忠(2002)。高級中學學校組織文化與行政主管知識管理態度關係之研究。教育研究資訊,10(3),71-99。
14. 魏惠娟、林怡禮(2006)。學校學習型組織的發展型態及其影響因素之研究。彰化師大教育學報,9,1-22。
15. 魏惠娟、林怡禮、潘慧玲、張明輝、陳嘉彌(2003)。驅動學校組織學習的因素分析。教育研究集刊,49(4):153-190。