跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張碩凱
研究生(外文):Shuo-Kai Chang
論文名稱:室溫離子液體在萃取之應用
論文名稱(外文):Applying Ionic Liquids to the Research of Extraction
指導教授:魏國佐
指導教授(外文):Guor-Tzo Wei
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:80
中文關鍵詞:染料萃取離子液體
外文關鍵詞:extractionionic liquiddye
相關次數:
  • 被引用被引用:0
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
室溫離子液體是一種具有離子配對性質的離子性溶劑,因此對多種物質皆具有良好的萃取效率。且離子液體以低揮發性及高熱穩定性著名,在綠色化學的浪潮下備受研究者青睞。
本研究首先針對離子液體之離子配對溶劑的弁遄A探討如何藉離子液體提升萃取染料水溶液的濃縮倍率,並降低偵測極限。實驗上為達成液相─液相微萃取目的,以微量室溫離子液體1-alkyl-3-methyl-imidazolium hexafluorophosphate 為萃取溶劑;及較大量且與離子液體互溶的CH2Cl2 為分散溶劑,分別對methyl blue(MB)、neutral red(NR)及methyl red(MR)等染料水溶液進行液相─液相萃取。待水溶液相染料被萃取至有機相後,再移除分散溶劑以達成微萃取效用。實驗結果顯示以此種分析方法將染料MB、NR、MR濃縮倍數分別在500、550、400以內相對回收率仍達80%以上。此萃取模式不但具有更佳的前濃縮的效果,且可減少離子液體的使用、減少操作成本並降低高黏度離子液體於萃取操作上的困難度。
文獻指出添加螯合劑於離子液體中可有效萃取水溶液金屬離子。因此本實驗將結構上具有雙鍵的離子液體單體塗佈於silica表面,再進行聚合反應以固定離子液體官能基於靜相,並以此靜相吸附金屬螯合劑Dithizone,製備出可萃取重金屬的固相吸附劑。實驗結果顯示:此種固相吸附劑對Cu2+、Zn2+、Ag+、Pb2+等金屬離子皆具有90%的高萃取率,且重複萃取、脫附實驗五次後仍維持90%以上回收率。顯示此種技術可以操作較為簡便的固相萃取法替代金屬離子液相─液相萃取法,且所製備之固相吸附劑亦具有可重複使用性,更符合綠色分析化學宗旨。
Room-temperature ionic liquids (RTILs) are nonmolecular solvents and have the nature of ion-pair regents in liquid-liquid extraction. These aspects enable RTILs, such as 1-alkyl-3-methylimidazolium ionic liquids, to become very effective solvents for extraction. Because they are nonvolatile and thermal stable, RTILs are regarded as “green solvents”. Hence, RTILs continue to attract a considerable degree of interest recently.
The first part of this research employed RTILs as extraction solvents in liquid-liquid microextraction (LLME) of dyes. In this study, aqueous dye solution was injected into an extraction solution that contains a small amount of 1-alkyl-3-methylimidazolium hexafluorophosphate in a relative large amount of dichloromethane, as the disperser solvent. The probed dyes include methyl blue (MB), neutral red (NR), and methyl red (MR) that are highly soluble in water. With the ion-pair nature of ionic liquid, the extraction of ionic dyes from aqueous solution was rather effective. After extraction, dichloromethane was removed from extractant by evaporation. Due to the low vapor pressure of ionic liquid, the extracted dyes were preserved in ionic liquid phase. This approach of LLME not only increases the enrichment factor, it also decreases the amount of ionic liquid employed. The recoveries are around 80% with the enrichment factors of MB、NR and MR around 500、550 and 400 times, respectively. In comparison with conventional extraction methods, LLME with RTILs can be operated in a faster and effective manner.
The second part of this research employed a coated polymeric ionic liquid as the absorbant of solid phase extraction (SPE). The adsorbent was used to adsorb dithizone, a metal chelator, to extract heavy metals with 90% extraction efficiencies for copper, lead, silver and zinc. The extraction efficiency of copper is maintained at 90% level after recycling five times. This new adsorbent not only decreases the quantity of ionic liquids, eliminates the dissolution of RTILs, as well as can be recycled on the extraction of metal ions.
總目錄
總目錄…......……………………………………………………………… I

表目錄……………………………………………………………………… IV
圖目錄……………………………………………………………………… V
第一章 緒論………………………………………………………………. 1
1.1研究動機……………………………………………………………….. 1
1.2 離子液體……………………………………………………………… 1
1.2.1 離子液體物理性質………………………………………………… 3
1.2.2離子液體的發展…………………………………………………… 5
1.2.3離子液體的應用…………………………………………………….. 6
1.3染料…………………………………………………………………… 8
1.4重金屬………………………………………………………………… 9
1.5 萃取…………………………………………………………………… 11
1.5.1液相微萃取…………………………………………………………. 11
1.5.2 固相萃取……………………………………………………………. 15
1.5.3 離子液體在液相微萃取的應用……………………………………. 16
1.5.4 離子液體在固相萃取的應用………………………………………. 17
第二章 實驗藥品、設備及方法…………………………………………. 19
2.1實驗藥品……………………………………………………………… 19
2.2實驗設備………………………………………………………………. 20
2.3 實驗步驟……………………………………………………………… 20
2.3.1 離子液體合成………………………………………………………. 20
2.3.1.1 [BMIM][PF6]合成………………………………………………… 20
2.3.1.2 [BMIM][BF4]合成………………………………………………… 21
2.3.1.3 [C9(Vim)2][Br]2合成……................................................................. 22
2.3.1.4 [C6Vim][PF6]合成…………………………………………………. 23
2.3.2水溶液染料液相液相微萃取步驟…………………………………... 23
2.3.3重金屬離子固相萃取………………………………………………... 24
2.3.3.1吸附劑之製備……………………………………………………… 24
2.3.3.2 重金屬水溶液固相萃取步驟…………………………………….. 25
第三章 實驗結果與討論…………………………………………………. 26
3.1離子液體之NMR圖譜…………………………….............................. 26
3.2液相微萃取水溶液染料………………………………………………26
3.2.1光譜特徵…………………………………………………………….. 26
3.2.2探討離子液體最佳化使用量……………………………………….. 26
3.2.3 濃縮倍數相對回收率探討………………………………………….. 27
3.2.4 pH值對萃取率的影響……………………………………………… 27
3.2.5 鹽類濃度對萃取率的影響…………………………………………. 28
3.2.6界面活性劑對萃取率的影響 ……………………………………… 29
3.2.7親水性離子液體[BMIM][BF4]當萃取液可能性…………………… 29
3.2.8離子液體對染料螢光增強效應……………………………………… 30
3.2.9 染料在自來水及湖水之萃取效率…………………………………. 31
3.3重金屬離子固相萃取…………………………………………………... 32
3.3.1吸附劑的介紹以及金屬離子在FAAS線性範圍…………………… 32
3.3.2離子液體的固定化…………………………………………………… 32
3.3.3吸附劑量及萃取時間最佳化探討…………………………………..
33
3.3.4 pH值對金屬離子萃取率影響……………………………………. 34
3.3.5 界面活性劑對金屬離子萃取率影響…………………………….… 34
3.3.6 不同金屬離子對Cu離子萃取率影響 ……………………………. 35
3.3.7 不同陰離子對銅離子萃取率影響…………………………………. 35
3.3.8 銅離子在自來水及湖水之萃取效率………………………………. 35
3.3.9 測試吸附劑重複使用的可能性……………………………………. 36
第四章 結論………………………………………………………………. 38
第五章 文獻………………………………………………………………. 39




表目錄
表2.1 離子液體物理性質………………………………………………… 42
表3.1染料的物理性質…………………………………………………… 42
表3.2 界面活性劑物理性質……………………………………………… 43
表3.3 離子液體在水溶液中含不同量NaCl與二氯甲烷間分佈係數…. 43
表3.4 染料水溶液藉由離子液體濃縮100倍及螢光增強倍數…………. 44
表3.5 液相液相微萃取之分析特徵表…………………………………… 44
表3.6 液相液相微萃取法測試染料在廢水及湖水中相對回率………… 45
表3.7離子液體種類相對螯合劑吸附量…………………………………. 45
圖目錄
圖2.1[BMIM][PF6]離子液體反應流程圖……………………………… 46
圖2.2[BMIM][BF4]離子液體反應流程圖……………………………… 46
圖2.3 [C9(Vim)2][Br]2離子液體反應流程圖…………………………… 47
圖2.4 [C6Vim] [PF6]離子液體反應流程圖………………………………. 47
圖2.5染料化學結構……………………………………………………… 48
圖2.6 單雙鍵型離子液體聚合反應圖…………………………………… 48
圖3.1 [BMIM][PF6]溶於 d-DMSO之1H-NMR圖譜………………… 49
圖3.2 [C6Vim][PF6]單體溶於d-DMSO之1H-NMR圖譜…………… 50
圖3.3 [C9(Vim)2][Br]2 單體溶於d-DMSO之1H-NMR圖譜………. 51
圖3.4不同量離子液體被二氯甲烷稀釋至5mL對5mL 10 ppm MR染料的萃取效率……………………………………………………………. 52
圖3.5 MB、MR、NR三種不同染料在不同濃縮倍數所相對回收率 52
圖3.6 MB、NR、MR三種不同染料在不同pH值狀態下相對回收效率…………………………………………………………………………… 53-54
圖3.7 MB、MR、NR三種不同染料在不同NaCl濃度干擾狀態下相對回收效率……………………………………………………………… 55
圖3.8 MB、MR、NR三種不同染料在不同界面活性劑TTAB濃度干擾狀態下相對回收效率………………………………………………….. 56
圖3.9 MB、MR、NR三種不同染料在不同界面活性劑SDS濃度干擾狀態下相對回收效率……………………………………………………… 56
圖3.10 不同離子液體C4BF4體積用二氯甲烷稀釋至5mL在UV-VIS光譜儀中之檢量線……………………………………………………….. 57
圖3.11 染料NR在不同濃縮倍數下相對回率…………………………. 57
圖3.12 染料在不同溶劑下之螢光譜…………………………………… 58
圖3.13 dithizone對銅離子螯合作圖…………………………………… 59
圖3.14 (a)銅(b)鉛(c)銀(d)鋅離子在火燄原子吸收光譜之檢線……….. 59
圖3.15 (a)單邊雙鍵離子液體聚合(b)單邊雙鍵離子液體掺雜交聯劑聚合之圖……………………………………………………………………… 60
圖3.16 在不同吸附劑的量對5mL 5ppm銅離子相對萃取率………… 60
圖3.17 在超音波震盪器中不同萃取時間對 5mL 5ppm銅離子相對萃取率………………………………………………………………………. 61
圖3.18 銅、鉛、銀、鋅四種不同金屬離子在不同pH狀態下之相對萃
取率………………………………………………………………………… 62
圖3.19 不同界面活性劑在不同濃度干擾下相對於銅離子的萃取率… 63
圖3.20 陽離子對銅離子的干擾………………………………………… 64
圖3.21 陰離子對銅離子的干擾………………………………………… 65
圖3.22 在不同水溶液干擾中銅離子相對萃率………………………… 66
圖3.23 同一吸附劑萃取、脫附循環5次所得之萃取率及脫附率……… 67
1.http://gc.chem.sinica.edu.tw/new-no-ionic.html
2.K.R. Seddon, A. Stark, M.J. Torres, Pure Appl. Chem. 72 (2000) 2275.
3.S.N.V.K. Aki, Brennecke, Samanta, A. Chem. Commun. 23 (2001) 413.
4.W. Bao, Z. Wang, Y. Li, J. Org. Chem. 68 (2003) 591.
5.P.T. Anastas, J.B. Zimmerman, Environ. Sci. Technol. 37 (2003) 94A.
6.J.D. Holbery, K.R. Seddon, Clean Technol. Environ. Pol. (1999) 223.
7.Y. Chauvin, H. Olivier-Bourbigou, CHEMTECH 25 (1995) 26.
8.R. Sheldon, Chem. Commun. (2001) 23991.
9.J.S. Wilkes, M.J. Zaworotko, J. Chem. Soc., Chem. Commun. (1992) 965.
10.P. Bonhote, A.P. Dias, M. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Inorg. Chem. 35 (1996) 1168.
11.I.M. Herfort, H. Schneider, Liebigs Ann. Chem. (1991) 27.
12.P. Wasserscheid, W. Keim, Angew. Chem., Int. Ed. 39 (2000) 3772.
13.F.H. Hurley, T.P.Jr. Wier, J. Electrochem. Soc. 98 (1951) 207.
14.H.L. Chum, V.R. Koch, L.L. Miller, R.A. Osteryong, J. Am. Chem. Soc. 97 (1975) 3264.
15.(a) T.B. Scheffler, C.L. Hussey, K.R. Seddon, C.M. Kear, P.D. Armitage, Inorg. Chem. 22 (1983) 2099. (b) T.M. Laher, C.L. Hussey, Inorg. Chem. 22 (1983) 3247.
16.T. Welton, Chem. Rev. 99 (1999) 2071.
17.D.J. Jaeger, C.E. Tucker, Tetrahedron Lett. 30 (1989) 1785.
18.D. Huchette, B. Thery, F. Petit, J. Mol. Catal. 4 (1979) 433.
19.J.A. Boon, J.A. Levisky, J.L. Pflug, J.S. Wilkes, J. Org. Chem. 51 (1986) 480.
20.D.R. MacFarlane, J. Huang, M. Forsyth, Nature 402 (1999) 792.
21.M. Doyle, S.K. Choi, G. Proulx, J. Electrochem. Soc. 147 (2000) 34.
22.W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Chem. Commun. (2002) 374.
23.T.J. Boyle, D. Ingersoll, M.A. Rodriguez, C.J. Tafoya, D.H. Doughty, J. Electrochem. Soc. 146 (1999) 1687.
24.M.C. Buzzeo, O.V. Klymenko, J.D. Wadhawan, C. Hardacre, K.R. Seddon, R.G. Compton, J. Phys. Chem. A 107 (2003) 8872.
25.I.M. AlNashef, M.L. Leonard, M.C. Kittle, M.A. Matthews, J.W. Weidner, Electrochem. Solid-State Lett. 4 (2001) D16.
26.I.M. AlNashef, M.L. Leonard, M.A. Matthews, J.W. Weidner, Ind. Eng. Chem. Res. 41 (2002) 4475.
27.D. Giovanelli, M.C. Buzzeo, N.S. Lawrence, C. Hardacre, K.R. Seddon, R.G. Compton, Talanta 62 (2004) 904.
28.M.C. Buzzeo, C. Hardacre, R.G. Compton, Anal. Chem. 76 (2004) 4583.
29.R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, J. Am. Chem. Soc. 124 (2002) 4974.
30.Y. Liu, M. Wang, Z. Li, H. Liu, P. He, J. Li, Langmuir, 21 (2005) 1618.
31.C.F. Ye, W.M. Liu, Y.X. Chen, L.G. Yu, Chem. Commun. (2001) 2244.
32.Solvent-Innovation http://www.solvent-innovation.de.
33.L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Nature 399 (1999) 28.
34.C.F. Poole, K.G. Furton, B.R. Kersten, J. Chromatogr. Sci. 24 (1986) 400.
35.S.K. Poole, C.F. Poole, J. Chromatogr. 435 (1988) 17.
36.(a) D.W. Armstrong, L. He, Y.S. Liu, Anal. Chem. 71 (1999) 3873; (b)A. Berthod, L. He, D.W. Armstrong, Chromatographia 53 (2001) 63.
37.J. Ding, T. Welton, D.W. Armstrong, Anal. Chem. 76 (2004) 6819.
38.G.T. Wei, J.C. Chen, Z. Yang, J. Chin. Chem. Soc. 50 (2003) 1123.
39.G.T. Wei, Z. Yang, C.J. Chen, Anal. Chim. Acta, 488 (2003) 183.
40.Z. Li. Talanta 71 (2007) 68.
41.A.E. Visser, R.P. Swatloski, R.D. Rogers, Green Chem. 2 (2000) 1.
42.Y.C. Pei, J.J. Wang, X.P. Xuan, J. Fan, M. Fan, Environ. Sci. Technol. 41 (2007) 5090.
43.R. Vijayaraghavan, N. Vedaraman, M. Surianarayanan, D.R. MacFarlane, Talanta 69 (2006) 1059.
44.W.H. Lo, H.Y. Yang, G.T. Wei, Green Chem. 5 (2003) 639.
45.P. Stepnowski, Anal. Bioanal. Chem. 381 (2005) 189.
46.J.F. Liu, G.B. Jiang, Y.G. Chi, Y.Q. Cai, Q.X. Zhou, J.T.Hu, Anal. Chem. 75 (2003) 5870 .
47.M. Andre, J. Loidl, G. Laus, H. Schottenberger, G. Bentivoglio, K. Wurst, K.H. Ongania, Anal. Chem. 77 (2005) 702.
48.G.T. Wei, Z. Yang, C.Y. Lee, H.Y. Yang, R. C. Wang, J. Am. Chem. Soc. 126 (2004) 5036.
49.V.K. Aggarwal, I. Emme, A. Mereu, Chem. Commun. (2002) 1612.
50.P. Wasserscheid, T. Welton Ionic Liquids in Synthesis. Wiley-VCH: Weinheim, (2003).
51.L.M. Games, R.A. Hltes, Anal. Chem. 49 (1977) 1433.
52.J. Houk, M.A. Dezube, J.M. rovinski, 1991. Evaluation of dyes submitted under the toxic substances control act new chemicals programme. In colour chemistry. Elsevier Science Publishers Ltd. Lodon. p. 135.
53.USITC. 1989. Synthetic Organic Chemicals, United States Production and Sales, 1988. USITC Publication No 2219. Washington, D.C.: U.S. Government Printing Office.
54.http://www2.nsysu.edu.tw/IEE/lou/elec/web/process/semi.htm
55.江昌嶽, 國立中興大學化學所碩士論文 (2004).
56.L. Hanghui, K.D. Purnendu, Anal. Chem. 68 (1996) 1817.
57.A. Jeannot, F.F. Cantwell, Anal. Chem. 69 (1997) 235.
58.Y. He, H.K. Lee, Anal. Chem. 69 (1997) 4634.
59.S. Pedersen-Bjergaard, K.E. Rasmussen , Anal. Chem. 71 (1999) 2650.
60.H.G. Ugland, M. Krogh, K.E. Rasmussen, J. Chromatogr. B 749 (2000) 85.
61.K.E. Rasmussen, S. P-Bjergaard, Anal. Chem. 23 (2004) 1.
62.T.S. Ho, S. Pedersen-Bjergaard, K.E. Rasmussen, J. Chromatogr. A 963 (2002) 3.
63.L. Zhao, H.K. Lee, J. Chromatogr. A 919 (2001) 381.
64.S. Lacorte, I.Guiffard, D.Fraisse, D.Barcelo, Anal. Chem. 72 (2000) 1430.
65.http://mc.manuscriptcentral.com/geac
66.J.L. Anderson, D.W. Armstrong, Anal. Chem. 77 (2005) 6453.
67.陳秀娘, 國立中正大學化學暨生物化學所博士班進度報告 (2006).
68.L. Hou, H.K. Lee, Journal of Chromatography A 976 (2002) 377.
69.M.K. Purkit, S.S. Vijay, S. DasGupta, S. De, Dyes and Pigments 63 (2004) 151.
70.楊儒興, 國立中正大學化學所碩士論文 (2003).
71.R.G. Pearson, J. Chem. Educ. 45 (1968) 581.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊