跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/24 11:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宗憓
研究生(外文):Tsung-Hui Li
論文名稱:多層電子結構的發展與鈍氣化合物的理論研究
論文名稱(外文):The Development of Multi-electronic Method and Theoretical Prediction of Noble-Gas Molecules
指導教授:胡維平
指導教授(外文):Wei-Ping Hu
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:165
中文關鍵詞:氫轉移激發態鈍氣化合物多層電子結構
外文關鍵詞:Multi-electronic MethodNoble-Gastunneling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究分為六章,第一章我們藉由對第三週期的元素(Al-Cl)使用較佳的基底函數來改善我們實驗室發展用來計算原子化能量及中性系統的反應能量及能量障礙的多層電子結構的方法(MLSEn),此方法命名為MLSEn+d。此新方法中的參數是對更新過的109 個原子化能量、38 個氫轉移反應的能量障礙及非氫轉移反應資料庫中的22 個中性反應做最佳化所得到的。這些方法對上述三種類型能量的測試都有不錯的結果,其中最好的方法MLSE4+d 對此三種類型能量的平均絕對誤差分別為0.70、0.87 及0.69 kcal/mol。接著我們又發展了另一新的多層電子結構方法,其能量包含了密度泛函理論方法之能量計算。在所測試的DFT方法中表現最佳的MLSE-TPSS1KCIS方法之三種類型能量的平均絕對誤差分別為0.62、0.55 及0.69 kcal/mol。我們也發現混成形式(hybrid)的DFT方法並非絕對必要的,且若DFT方法配合兩種不同基底函數計算,可使整體的平均絕對誤差有明顯的改進。此外,我們以加入MP2/aug-cc-pVTZ及MP4SDQ/cc-pVTZ兩種計算來改善我們實驗室所發展的MLSE方法,此方法仍為純粹ab initio的方法,我們稱其為MLSE (aptz),此方法在計算游離能及電子親和力的準確度方面有大幅的改進,其總平均絕對誤差為0.62 kcal/mol。最後我們更嘗試以MLSE (aptz)的方法加入DFT的能量計算,所得的總平均絕對誤差較MLSE(aptz)方法下降約0.04 kcal/mol。因此上述的各種新方法可應用在需準確能量的熱化學甚至動力學之研究。
在第二章中,我們以雙層VTST/QRST理論計算HArF進行氣相線性分解反應,在溫度20 K至600 K時的反應速率常數。探討穿隧效應對反應速率動力學同位素效應的影響,詳細比較harmonic approximation 和WKB approximation兩種方法計算QRST的結果,並且和傳統上計算穿隧效應的結果做比較。當溫度在300 K以下時,反應的發生主要是靠穿隧效應作用,在QRST的計算中,以WKB approximation 方法評估能階的計算結果,其穿隧效應的貢獻較傳統上的計算結果大。在低溫時HArF → Ar + HF反應速率常數較HArF→ H + Ar + F反應大,顯示出低溫時主要是HArF →Ar + HF的分解路徑,而在溫度較高時,HArF→ H + Ar + F是主要的分解路徑。由本研究可知對穿隧效應極為重要的反應而言,很低溫下的反應速率常數是由反應能量決定,而非能量障礙。
在第三章中,我們利用高階的全初始 (ab initio)法研究含有惰性氣體的陰離子 FArO
This thesis consists of six chapters. In chapter 1, we improved our multi-level electronic structure methods MLSEn for calculating the atomization energies and reaction energy barriers for neutral systems by using improved correlation-consistent basis sets for second-row elements. The re-parameterization of the improved methods MLSEn+d was based on updated databases of 109 atomization energies, 38 hydrogen-transfer barrier heights, and 22 neutral reaction barrier heights from a recently developed database of non-hydrogen-transfer reactions. The improved methods perform very well on all three types of energies with mean unsigned errors of 0.70, 0.87, and 0.69 kcal/mol by the MLSE4+d method. We have also developed a set of new multi-level electronic structure methods by including energies calculated from several density functional theory methods. The best method, MLSETPSS1KCIS, performed impressively on the above three types of energies with mean unsigned errors of 0.62, 0.55, and 0.69 kcal/mol, respectively. We found that the hybrid versions of DFT are not absolutely necessary, and the performance can be improved significantly using two different basis sets in DFT calculation.
In chapter 2, the rate constants for the gas-phase dissociation of HArF to constituent atoms have been calculated using dual-level variational transition state theory with quantized reactant state tunneling from 20 to 600 K. We make detailed comparisons of the tunneling effects and kinetic isotope effects of reactions using QRST by using harmonic approximation and WKB approximation methods to obtain the quantized reactant energy levels. These results were compared to the calculations using conventional tunneling method. Tunneling was found to dominate the reaction below 300 K. The calculated KIEs showed dramatic increases below 400 K. Compared to the conventional tunneling method, the QRST by WKB approximation predicted appreciably higher rate constants below 70 K and higher KIEs below 40 K. The rate constants became higher than the “bending” pathway except at low temperature. Thus, except at low temperature in the gas phase, the reaction to constituent atoms may become the important dissociation pathway. The rate constants at lower temperature are determined by the energy of reaction, not the barrier height, while the tunneling effect is extremely important for the reaction.
In chapter 3, the structures and energies of the noble-gas containing anions FNgO
總 目 錄
頁次
中文摘要……………………………………………………………I
英文摘要……………………………………………………………V

第一章 結合多階全初始電子結構計算與密度泛涵理論之準確能量計算方法
摘要........................................................................................................1-1
1.1 前言.................................................................................................1-2
1.2 計算方法……………………………………………………….. ..1-4
1.3 結果與討論……………………………………………………... 1-10
1.4 結論……………………………………………………………... 1-16
1.5 參考文獻…………………………………………………………1-18
圖表………………………………………………………………1-21

第二章 HArF
Greenwood, N. N.; A. Earnshaw, in Chemistry of the Elements; Butterworth-Heinemann: Oxford, 2001, 888.
(2)Laszlo, P.; Schrobilgen, G. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 479.
(3)Bartlett, N. Proc. Chem. Soc. 1962, 218.
(4)(a) Pettersson, M.; Lundell, J.; Räsänen, M. J. Chem. Phys. 1995, 102, 6423. (b)Pettersson, M.; Lundell, J.; Räsänen, M. J. Chem. Phys. 1995, 103, 205. (c) Pettersson, M.; Lundell, J.; Khriachtchev, L.; Räsänen, M. J. Chem. Phys. 1998, 109, 618.
(5)Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. Nature 2000, 406, 874.
(6)Pettersson, M.; Khriachtchev, L.; Lignell, A.; Räsänen, M. J. Chem. Phys. 2002 116, 2508.
(7)Seidel, S.; Seppelt, K. Science 2000, 290, 117.
(8)Hu, W.-P.; Huang, C.-H. J. Am. Chem. Soc. 2001, 123, 2340.
(9)(a) Li, J.; Bursten, B. E.; Liang, B.; Andrews, L. Science 2002, 295, 2242. (b) Andrews, L.; Liang, B.; Li, J.; Bursten, B. E. J. Am. Chem. Soc. 2003, 125, 3126. (c) Liang, B.; Andrews, L.; Li, J.; Bursten, B. E. Inorg. Chem. 2004, 43, 882.
(10)Christe, K. O. Angew. Chem. Int. Ed. 2001, 40, 1419.
(11)Botschwina, P.; Oswald, R. Chem. Phys. Lett. 2003, 377, 156.
(12)Adamovic, I.; Gordon, M. S. J. Phys. Chem. A 2004, 108, 11042 and references therein.
(13)Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
(14)Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.
(15)(a) Dunning Jr., T. H. J. Chem. Phys. 1989, 90, 1007. (b) Kendall, R. A.; Dunning Jr., T. H. J. Chem. Phys. 1992, 96, 6796. (c) Woon, D. E.; Dunning Jr., T. H. J. Chem. Phys. 1993, 98, 1358. (d) Wilson, A. K.; Woon, D. E.; Peterson, K. A.; Dunning Jr., T. H. J. Chem. Phys. 1999, 110, 7667.
(16)Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
(17)Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comp. Chem. 1996, 17, 49.
(18)Bannerjee, A.; Adams, N.; Simons, J.; Shepard, R. J. Phys. Chem. 1985, 89, 52.
(19)Wong, M. W. J. Am. Chem. Soc. 2000, 122, 6289.
(20)Runeberg, N.; Pettersson, M.; Khriachtchev, L.; Lundell, J.; Räsänen, M. J. Chem. Phys. 2001, 114, 836.
(21)Chen, Y.-L.; Hu, W.-P. J. Phys. Chem. A 2004, 108, 4449.
(22)Chaban, G. M.; Lundell, J.; Gerber, R. B. Chem. Phys. Lett. 2002, 364, 628.
(23)Yen, S.-Y.; Mou, C.-H.; Hu, W.-P. Chem. Phys. Lett. 2004, 383, 606.
(24)Feyereisen, M. W.; Feller, D.; Dixon, D. A. J. Phys. Chem. 1996, 100, 2993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top