跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 17:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宜政
研究生(外文):Yi-Jeng Tsai
論文名稱:3-PRS並聯式機構之運動與動態特性研究
論文名稱(外文):Research on Kinematic and Dynamic Characteristics of a 3-PRS Parallel Mechanism
指導教授:蔡孟勳蔡孟勳引用關係蕭庭郎
指導教授(外文):Meng-Shiun TsaiTing-Nung Shiau
學位類別:博士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:131
中文關鍵詞:並聯式機構順向運動學誤差分析動態分析接頭間隙碰撞力學自然頻率剛性
外文關鍵詞:dynamic analysisjoint clearanceerror analysisdirect kinematicscontact dynamicnatural frequencystiffnessparallel mechanism
相關次數:
  • 被引用被引用:4
  • 點閱點閱:433
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:1
並聯式機構具有高剛性、高速、高承載力及複雜的曲面加工能力等優點,使得並聯式機構被應用在工具機產業。為了發揮這些優點、提升性能,運動學、動態特性及剛性分析是有必要深入研究的。在本文中以台灣工業技術研究院機械所開發的並聯式工具機為例子進行研究。
關於3-PRS並聯式機構的運動分析,首先利用幾何關係所建立的耦合非線性三角方程式來描述3-PRS機構的運動學,使用貝祖消去法(Bezout Elimination Method)求得64組可能的解。將這64個解分為6個群組,探討各群組的機構構型以判斷出正確的解。此外,本文中提出利用最佳化方法,訂出正確解的行為限制條件,可有效率的求得順向運動學的解。順向運動學方程式亦可用來推導進給誤差模型,分析進給誤差如滾珠導螺桿背隙對於運動軌跡的影響。
應用牛頓-歐拉法(Newton-Euler Method)及運動分析導出的方程式來推導具剛體接頭之3-PRS並聯式機構的運動方程式,並且導入接頭剛性、間隙及摩擦力於動態模型中。利用線性化的技巧來處理複雜的三角微分方程式,忽略加速度項與速度項則可推導出靜態剛性,改變不同的滑行對位置可建立工作空間中的剛性地圖,並可求得等效剛性與接頭剛性間的比值。應用倫基-庫達數值積分方法(Runge-Kutta Method)可求得系統動態響應,數值結果顯示當接頭間隙越大時,動態響應及接頭傳遞力亦隨著增大。系統自然頻率可利用解線性化的運動方程式之特徵方程式求得,結果顯示自然頻率隨著滑行對位置改變,並利用自然頻率對應之模態形狀來解釋其變化的趨勢。有關具接頭間隙之系統自然頻率,由於接頭間隙與摩擦效應造成系統的不連續性,本文則利用脈衝響應來求得,接頭間隙對於以旋轉運動為主的運動模態的自然頻率的影響最大。最後探討系統幾何尺寸、連桿密度、接頭剛性對系統自然頻率的靈敏度。
Parallel mechanisms have been applied to machine tools due to their advantages of high stiffness, high speed, large load carrying capacity and complicated surface processing ability. In order to take these advantages, comprehensive analyses on kinematics, dynamics and stiffness should be performed. In this dissertation, a parallel typed machine tool developed by the Industry Technology Research Institute (ITRI) in Taiwan is used as the research target for performing analyses.
For the kinematics of the 3-PRS parallel mechanism, the geometric method is applied to formulate three coupled trigonometric equations to describe the direct kinematics. One algorithm for solving the three coupled equations is to use the Bezout’s elimination method which leads to a total of 64 solutions. By categorizing the 64 solutions into 6 groups and further examining the corresponding configuration for each group, the desired solution to the direct kinematics can be obtained. The other algorithm for solving the coupled equations is to apply optimization technique with side and behavior constraints. This approach can efficiently obtain the desired solution without checking all the possible solutions. The direct kinematics model is applied to develop the error model of the feed system. The backlash effects on the motion trajectory are also investigated
Based on the kinematics, the equations of motion of the 3-PRS parallel mechanism with rigid joints is formulated by using the Newton-Euler approach. Furthermore, joint flexibility, clearance and friction effects are included in the dynamics model. The linearization technique is applied to deal with the trigonometric differential equations. The static stiffness at the tool-tip is calculated by neglecting the terms of inertia and velocities from linearized equations of motion. The stiffness map is built within the working space. To obtain the dynamic response, Runge-Kutta method is adopted to solve the nonlinear equations of motion. The results shows that the dynamic responses and the transmitting forces increase as the joint clearances increase. The system natural frequencies are determined by solving the characteristic equations of the linearized equations of motion. The results show that the natural frequencies vary as the sliders positions change, and the cause of the frequencies shift is explained by analyzing their associated mode shapes. The impulse response is also applied to determine the natural frequencies of the system with joint clearances because of its discontinuity. The joint clearances significantly affect the modes which the rotational motions are dominated. Finally, the sensitivity analysis on geometric parameters, link density and joint flexibility to natural frequencies are performed.
摘要 i
ABSTRACT ii
LIST OF TABLES vi
LIST OF FIGURES vii
NOMENCLATURE xi
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 2
1.2.1 Kinematic analysis 2
1.2.2 Dynamic analysis 5
1.2.3 Stiffness analysis 6
1.3 Dissertation Outline 7
CHAPTER 2 KINEMATIC ANALYSIS 10
2.1 Direct Kinematics 10
2.1.1 Direct kinematic formulation 11
2.1.2 Approach I – the Bezout’s elimination method 15
2.1.3 Approach II – optimization technique 19
2.2 Inverse Kinematics 22
2.3 Error Analysis 24
2.3.1 Feed error formulation 24
2.3.2 Ball screw backlash effect 27
2.4 Summary 29
CHAPTER 3 DEVELOPMENT OF DYNAMICS FORMULATION 45
3.1 System Equations of Motion 46
3.1.1 Consideration with rigid joints 47
3.1.2 Consideration with flexible joints 50
3.1.3 Consideration with joint clearance and friction effects 54
3.2 Formulation for Equivalent Stiffness 56
3.2.1 Linearization of equations of motion 57
3.2.2 Equivalent stiffness formulation 58
3.3 Formulation for Natural Frequency 59
CHAPTER 4 STINNFESS AND DYNAMICS ANALYSES 64
4.1 Stiffness Analysis 64
4.2 Dynamic Response and Transmitting Force Analyses 65
4.3 Natural Frequency Analysis 67
4.4 Sensitivity Analysis of Natural Frequency 70
CHAPTER 5 CONCLUSIONS 97
REFERENCES 101
APPENDIX 109
PUBLICATIONS 112
[1]V.E. Gough and S.G. Whitehall, 1962, “Universal Tyre Test Machine,” Proceedings of 9th International Technical Congress, F.I.S.I.T.A. pp. 117-137.
[2]D. Stewart, 1965, “A Platform with Six Degrees of Freedom,” in Proceedings of the Institute of Mechanical Engineering, Vol. 180, No. 5, pp. 371-386.
[3]K.H. Hunt, 1978, Kinematic Geometry of Mechanism, Clarendon Press, Oxford.
[4]K.H. Hunt, 1983, “Structural Kinematics of In-Parallel-Actuated Robot Arms,” ASME Journal of Mechanisms, Transmission and Automation in Design, Vol. 105, pp. 705-712.
[5]E.F. Fichter, 1986, “A Stewart Platform-Based Manipulator: General Theory and Practical Construction,” International Journal of Robotics Research, Vol. 5, No. 2, pp. 157-182.
[6]K. Sugimoto, 1986, “Kinematic and Dynamic Analysis of Parallel Manipulators by Means of Motor Algebra,” ASME Journal of Mechanisms, Transmission and Automation in Design, Vol. 109, pp. 3-7.
[7]J.P. Merlet, 1988, “Parallel Manipulators,” Proceedings of Seventh CISMIFTOMM Symposium on Theory and Practice of Robots and Manipulators, Udine, Italy, pp. 317-324.
[8]P. Nanua, K.J. Waldron and V. Murthy, 1990, “Direct Kinematic Solution of a Stewart Platform,” IEEE Journal of Robotics and Automation, Vol. 6, No. 4, pp. 438-443.
[9]C. Innocenti and V. Parenti-Castelli, 1990, “Direct position analysis of the Stewart platform mechanism,” Mechanism and Machine Theory, Vol. 25, No. 6, pp. 611-621.
[10]C. Zhang and S.M. Song, 1994, “Forward Position Analysis of Nearly General Stewart Platforms,” ASME Journal of Mechanical Design, Vol. 116, pp. 54-60.
[11]L.W. Tsai, 1999, Robot Analysis, John Wiley & Song Inc.
[12]W. Lin, C.D. Crane, and J. Duffy, 1994, “Closed Form Forward Displacement Analysis of the 4-5 In-Parallel Platforms,” ASME Journal of Mechanical Design, Vol. 116, pp. 47-53.
[13]B. Dasgupta and T.S. Mruthyunjaya, 1994, “A Canonical Formulation of the Direct Position Kinematics Problem for a General 6-6 Stewart Platform,” Mechanism and Machine Theory, Vol. 29, No. 6, pp. 819-927.
[14]M. Raghavan, 1993, “The Stewart Platform of General Geometry Has 40 Configurations,” ASME Journal of Mechanical Design, Vol. 115, pp. 277-282.
[15]C.W. Wampler, 1996, “Forward Displacement Analysis of General Six-In-Parallel SPS (Stewart) Platform Manipulators Using Soma Coordinates,” Mechanism and Machine Theory, Vol. 31, No. 3, pp. 331-337.
[16]M. Griffis and J. Duffy, 1989, “A Forward Displacement Analysis of a Class of Stewart Platforms,” Journal of Robotic Systems, Vol. 6, pp. 703-720.
[17]D.-M. Ku, 1999, “Direct displacement analysis of a Stewart platform mechanism,” Mechanism and Machine Theory, Vol. 34, pp. 453-465.
[18]K.H. Hunt and E.J.F. Primrose, 1993, “Assembly Configurations of Some In-Parallel-Actuated Manipulators,” Mechanism and Machine Theory, Vol. 28, No. 1, pp. 31-42.
[19]Z.J. Geng and L.S. Haynes, 1994, “A “3-2-1” Kinematic Configuration of a Stewart Platform and Its Application to Six Degree of Freedom Pose Measurements,” Robotics and Computer-Integrated Manufacturing, Vol. 11, No. 1, pp. 23-34.
[20]M. Husian and K.J. Waldron, 1994, “Direct Position Kinematics of the 3-1-1-1 Stewart Platform,” ASME Journal of Mechanical Design, Vol. 166, pp. 1102-1107.
[21]H. Bruyninckx, 1999, “Forward Kinematics for Hunt-Primrose Parallel Manipulators,” Mechanism and Machine Theory, Vol. 34, pp. 657-664.
[22]K.M. Lee and D.K. Shah, 1988, “Kinematic Analysis of a Three Degree of Freedom In-Parallel Actuated Manipulator,” IEEE Journal of Robotics and Automation, Vol. 4, No. 3, pp. 354-360.
[23]K.J. Waldron, M. Raghavan and B. Roth, 1989, “Kinematics of a Hybrid Series-Parallel Manipulation System,” Journal of Dynamic Systems, Measurement and Control, Vol. 111, No. 2, pp. 211-221.
[24]M. Husain and K.J. Waldron, 1994, “Position Kinematics of a Three-Limbed Mixed Mechanism,” ASME Journal of Mechanical Design, Vol. 116, pp. 924-929.
[25]Z. Huang, W.S. Tao and Y.F. Fang, 1996, “Study on the Kinematic Characteristics of 3 DOF In-Parallel Actuated Platform Mechanism,” Mechanism and Machine Theory, Vol. 31, No. 8, pp. 999-1007.
[26]Giddings & Lewis, 1995, Giddings and Lewis Machine Tools, Fond du Lac. WI.
[27]T.H. Chang, I. Inasaki, K. Morihara, and J.J. Hsu, 2000, “The Development of a Parallel Mechanism of 5 D.O.F. Hybrid Machine Tool,” Y2000 Parallel Kinematic Machines International Conference, Ann Arbor, Mi. USA.
[28]J.A. Carretero, R.P. Podhorodeski, M.A. Nahon, and C.M. Gosselin, 2000, “Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator,” ASME Journal Mechanical Design, Vol. 122, No. 1, pp. 17-24.
[29]E.J. Huag, 1992, Intermediate Dynamic, Prentice-Hall International Editions.
[30]W.H. Sunada and S. Dubowsky, 1983, “On the Dynamic Analysis and Behavior of Industrial Robotic Manipulators with Elastic Members,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 105, No. 1, pp. 42-51.
[31]G.G. Lowen and C. Chassapis, 1986, “The Elastic Behavior of Linkages: An Update,” Mechanism and Machine Theory, Vol. 21, No. 1. pp. 33-42.
[32]S. Dubowsky and F. Freudenstein, 1971, “Dynamic Analysis of Mechanical Systems with Clearances, Part I: Formulation of dynamic Model and Part II: Dynamic Response,” ASME Journal of Engineering for Industry, Vol. 93, No. 1, pp. 305-316.
[33]S. Dubowsky, 1974, “On Predicting the Dynamic Effects of Clearances in Planar Mechanisms,” ASME Journal of Engineering for Industry, Vol. 95, No. 1, pp. 317-323.
[34]R.S. Haines, 1980, “Survey: Two-Dimensional Motion and Impact at Revolute Joints,” Mechanism and Machine Theory, Vol. 15, No. 5, pp. 361-370.
[35]C. Bagci and F. Khosravi, 1986, “Dynamics of Spatial Mechanisms with Coulomb and Viscous Friction Forces in Bearings with Surface Contacts,” Proceedings of the ASME Design Engineering Technical Conference, Columbus, OH.
[36]A.L. Schwab, J.P. Meijaard and P. Meijers, 2002, “A Comparison of Revolute Joint Clearance Models in the Dynamic analysis of Rigid and Elastic Mechanical System,” Mechanism and Machine Theory, Vol. 37, pp. 895-913.
[37]S. Dubowsky, and T.N. Gardner, 1975, “Dynamic Interactions of Link Elasticity and Clearance Connections,” ASME Journal of Engineering for Industry, Vol. 97, No. 2, pp. 652-661.
[38]S. Dubowsky and M.F. Moening, 1978, “An Experimental and Analytical Study of Impact Forces in Elastic Mechanical Systems with Clearance,” Mechanisms and Machine Theory, Vol. 13, pp. 451-465.
[39]R.S. Haines, 1985, “An Experimental Investigation into the Dynamic Behavior of Revolute Joints with Varying Degrees of Clearance,” Mechanism and Machine Theory, Vol. 20, No. 3, pp. 221-231.
[40]E.J. Haug, S.C. Wu and S.M. Yang, 1986, “Dynamics of Mechanical Systems with Coulomb Friction, Stiction, Impact and Constriant Addition-Deletion,” Mechanism and Machine Theory, Vol. 21, No. 5, pp. 401-425.
[41]T. Liu and Y. Lin, 1990, “Dynamic Analysis of Flexible Linkages with Lubrication Joints,” Journal of Sound and Vibration, Vol. 141, pp. 193-205.
[42]H.S. Tzou and Y. Rong, 1991, “Contact Dynamics of a Spherical Joint and a Jointed Truss-Cell System,” AIAA Journal, Vol. 29, No. 1, pp. 81-88.
[43]Y. Rong and H.S. Tzou, 1992, “Dynamic Characteristics Evaluation of Elastically Jointed Structures through Stochastic Simulation,” Computer & Structures, Vol. 42, No. 3, pp. 311-330.
[44]O.A. Bauchau and J. Rodriguez, 2002, “Modeling of Joints with Clearance in Flexible Multibody Systems,” International Journal of Solids and Structures, Vol. 39, pp. 41-63.
[45]P. Flores and J. Ambrsio, 2004, “Revolute Joints with Clearance in Multibody Systems,” Computers and Structures, Vol. 82, pp. 1359-1369.
[46]W. Goldsmith, 1960, Impact: the Theory and Physical Behaviour of Colliding Ssolids, London: Edward Arnold Ltd.
[47]K.H. Hunt and F.R.E. Crossley, 1975, “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” Journal of Applied Mechanics, Vol. 7, pp. 440-445.
[48]R.C. Smith and E.J. Haug, 1990, DADS-Dynamic Analysis and Design System, Multibody Systems Handbook, Berlin: Springer-Verlag.
[49]P. Flores, J. Ambrsio, J.C.P. Claro, H.M. Lankarani and C.S. Koshy, 2006, “A Study on Dynamics of Mechanical Systems Including Joints with Clearance and Lubrication,” Mechanism and Machine Theory, Vol. 41, No. 3, pp. 247-261.
[50]P. Flores, J. Ambrsio, J.C.P. Claro and H.M. Lankarani, 2006, “Dynamics of Multibody Systems with Spherical Clearance Joints,” Journal of Computational and Nonlinear Dynamics, Vol. 1, No. 3, pp. 240-247.
[51]C. Gosselin, 1990, “Stiffness Mapping for Parallel Manipulators,” IEEE Transaction on Robotics and Automation, Vol. 6, No. 3, pp. 377–382.
[52]B.S. El-Khasawneh and P.M. Ferreira, 1999, “Computation of Stiffness and Stiffness Bounds for Parallel Link Manipulators,” International Journal of Machine Tools & Manufacture, Vol. 39, pp. 321-342.
[53]D. Zhang and C.M. Gosselin, 2002, “Kinetostatic Modeling of Parallel Mechanisms with a Passive Constraining Leg and Revolute Actuators,” Mechanism and Machine Theory, Vol. 37, pp. 599–617.
[54]M. Ceccarelli and G. Carbone, 2002, “A Stiffness Analysis for CaPaMan (Cassino Parallel Manipulator),” Mechanism and Machine Theory, Vol. 37, pp. 427–439.
[55]J. Tlusty, J. Ziegert and S. Ridgeway, 1999, “Fundamental Comparison of the Use of Serial and Parallel Kinematics for Machine Tools,” CIRP Annals - Manufacturing Technology, Vol. 48, No. 1, pp. 351–356.
[56]J. Tlusty, J. Ziegert and S. Ridgeway, 2000, “A Comparison of Stiffness Characteristics of Serial and Parallel Machine Tools,” SME Journal of Manufacturing Process, Vol. 2, No. 1, pp. 67–76.
[57]M.M. Svinin, S. Hosoe and M. Uchiyama, 2001, “On the stiffness and stability of Gough-Stewart platforms,” Proceedings - IEEE International Conference on Robotics and Automation, Vol. 4, pp. 3268-3273.
[58]C. Huang, W.-H. Hung and I. Kao, 2002, “New conservative stiffness mapping for the Stewart-Gough platform,” Proceedings - IEEE International Conference on Robotics and Automation, Vol. 1, pp. 823-828
[59]J.-S. Chen and W.-Y. Hsu, 2004, “Design and Analysis of a Tripod Machine Tool with an Integrated Cartesian Guiding and Metrology Mechanism,” Precision Engineering, Vol. 28, pp. 46–57.
[60]D. Zhang, F. Xi, C.M. Mechefske and S.Y.T. Lang, 2004, “Analysis of Parallel Kinematic Machine with Kinetostatic Modelling Method,” Robotics and Computer-Integrated Manufacturing, Vol. 20, No. 2, pp. 151-165.
[61]H. Sadjadian and H.D. Taghirad, 2006, “Kinematic, Singularity and Stiffness Analysis of the Hydraulic Shoulder: A 3-D.O.F. Redundant Parallel Manipulator,” Advanced Robotics, Vol. 20, No. 7, pp. 763-781.
[62]G. Salmon, 1964, Lessons Introductory to the Modern Higher Algebra, New York: Chelsea.
[63]F. Freudenstein and Maki, 1959, “Structural Error Analysis in Plane Kinematic Synthesis,” Journal of Engineering for Industry, Vol. 81, No. 1, pp. 15-22
[64]G.N. Vanderplaats, 1986, Numerical Optimization Techniques for Engineering Design, McGraw-Hill Inc.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王志宏、 駱香妃、鄧秀玉、 林姿宛,(2012),餐飲產業第一線員工工作倦怠與工作滿意度之研究,餐旅暨觀光 2012 年第九卷第三期。
2. 吳宗祐、鄭伯壎,(2006)工作投入、調節他人情緒能力與情緒勞動之交互作用對情緒耗竭的預測效果,中華心理學刊,48卷,1期,p69-87。
3. 吳宗祐、鄭伯壎,(2006),「難應付客戶頻次、知覺服務訓練效用兩者及情緒勞動與情緒耗竭之關係-『資源保存理論』的觀點」管理學報,23卷,5期,p581-599。
4. 吳宗祐,鄭伯壎 (2003)。組織情緒研究之回顧與前瞻。應用心理研究,19期,137-173頁。
5. 林尚平、湯大緯、劉桂苓、沈渼君,(2011),服務導向與支持氣候對銷售績效之影響:情緒勞務與適應性銷售行為的中介效果 中山管理評論第㈩㈨卷第1期2011年3月號p.179-206 。
6. 林正士,(2012),情緒勞務工作者與人力資源管理措施:整合分析觀點,國立金門大學學報第四期。
7. 許文俊,(1998),公部門服務品質構面之探討-台北市戶政事務所之實證,人事行政,第 26 期,59-64。
8. 陳書梅,(2012),流通館員情緒勞務與情緒耗竭之調查研究:以大學圖書館之刁難讀者服務為例,教育資料與圖書館學。
9. 謝安田、施淑惠,(2008),稅務稽徵工作屬性對賦權與工作滿意關係之影響,中國行政 ,p 23-50。
10. 蕭婉鎔,(2013), 服務銷售人員情緒勞動心理歷程之探討:資源保存理論觀點,中原企管評論 第十一卷第一期 p27-54。