# 臺灣博碩士論文加值系統

(44.200.82.149) 您好！臺灣時間：2023/06/05 11:47

:::

### 詳目顯示

:

• 被引用:3
• 點閱:321
• 評分:
• 下載:64
• 書目收藏:0
 本論文中主要探討速度拘束型運動系統之循跡控制。傳統等效法雖已解決以往多軸控制架構中，使用複雜或近似的輪廓誤差做控制設計上的困難，但對於我們提出的雙輪倒單穡捐屭t統卻無法應用，主要是因為系統動態中包含了速度限制條件，此為速度拘束型的運動系統。本文參考傳統等效誤差法，並以等效誤差理論做為基礎，對於拘束型運動系統提出廣義等效法建立其等效誤差模型，包括了等效輪廓誤差、切線誤差及新加入的速度誤差，也就是以狀態的角度建立系統的等效誤差模型，再以穩定誤差做為新的控制目標。利用等效誤差模型，將循跡問題轉換為穩定化的問題。針對驅動不足的速度拘束型系統，我們提出非線性控制中的滑動模式控制法則做設計，降低系統不確定量的影響。同時以直線與圓形軌跡做為例子，依據所提出的廣義等效法做座標轉換至誤差系統，結合滑動模式所設計之控制輸入以軟體做模擬分析。由我們所模擬的結果說明廣義等效法的概念是可行的，也可藉由改變控制參數使雙輪倒單穡捐屭t統在循各軌跡的過程中降低循跡誤差。
 This thesis is concerned with the contouring control of a nonholonomic motion system. A novel method, called method of generalized equivalent errors, is proposed for the controller design of contouring controllers. It is an extension of the method of equivalent errors, previously proposed for the contouring control of unconstrained multi-axis motion system. The equivalent errors are composed of equivalent contour errors and tangential error based on the desired path in the space of generalized coordinates. For nonholonomic systems, a path described only by generalized coordinates may not satisfy the nonintegrable velocity constraints. Thus, the method of equivalent errors will fail. In this case, velocity errors are incorporated into the equivalent errors to form the generalized equivalent errors. The generalized equivalent errors are regarded as a set of new coordinates. It transforms the contouring control problem into a stabilization problem. Then the new control objective is stabilizing the errors. The sliding mode control method is employed to design controllers for this nonlinear and under-actuated system. The method of generalized equivalent errors is then applied to a nonholonomic system, the wheeled inverted pendulum system. The contouring of linear and circular paths are performed numerically to verify the analysis.
 目錄第一章 緒論 91.1 前言 91.2 研究動機與目的 91.3 文獻回顧 10第二章 雙輪倒單穡捐屭t統 142.1 雙輪倒單穡捐屭t統架構 142.2 含速度形式之拘束條件下系統動態數學模型 17第三章 傳統等效誤差法簡介 213.1 等效輪廓誤差與切線誤差 213.2 座標轉換與控制器設計 24第四章 廣義等效誤差法 264.1 速度拘束型運動系統 264.2 等效輪廓誤差、速度誤差與切線誤差 284.3 誤差動態與控制器設計 32第五章 數值模擬結果與討論 385.1 循直線軌跡 395.2 循菱形軌跡 475.3 循平行四邊形軌跡 495.4 循圓形軌跡 51第六章 結論與未來方向 816.1 結論 816.2 未來方向 81參考文獻 83附錄 86
 參考文獻[1]http://www.segway.tw/[2]Yunsu Ha, and Shin’ichi Yuta,“Trajectory Tracking Control for Navigation of Self-Contained Mobile Inverse Pendulum,” Proceedings of the IEEE/RSJ/GI International Conferences, Vol. 3, pp.1875 – 1882, Sep 1994.[3]Grasser, F., D''Arrigo, A., Colombi, S., Rufer, A.C., “JOE: a mobile, inverted pendulum,” IEEE Trans. Industry Electronics, Vol. 49, No. 2, pp. 107-114, Feb. 2002[4]Nawawi, S.W, Ahmad, M.N, Osman, J.H.S, Husain, A.R, Abdollah, M.F, “Controller Design for Two-wheels Inverted Pendulum Mobile Robot Using PISMC,” SCOReD 2006. 4th, Shah Alam, Selangor, Malaysia, pp. 194-199, June 2006[5]Pathak, K., Franch, J., Agrawal, S.K., “Velocity and position control of a wheeled inverted pendulum by partial feedback linearization,” IEEE Trans. Robotics, Vol.21 No.3, June 2005[6]Ching-Chih Tsai, Shui-Chun Lin, Wen-Lung Luo, “Adaptive Steering of a self-balancing Two-Wheeled Transporter,” Proceedings of 2006 CACS Automatic Control Conference, St. John’s University, Tamsui, Taiwan, pp. 789-794, Nov 2006[7]Gans, N.R., Hutchinson, S.A., “Visual Servo Velocity and Pose Control of a Wheeled Inverted Pendulum through Partial-Feedback Linearization,” 2006 IEEE/RSJ International Conference. Intelligent Robots and Systems, Beijing, China, pp. 3823-3828, Oct 2006[8]Kang, Ming Tao; Vo, Hoang Duy; Kim, Hak Kyeong; Kim, Sang Bong, “Control System Design for a Mobile Inverted Pendulum via Sliding Mode Technique,” Proceedings of IEEE International Conference. Mechatronics, Kumamoto, Japan, pp. 1-6, May. 2007[9]吳凱強, “以等效誤差為基礎之多軸運動系統循跡控制,” 國立中正大學機械工程研究所碩士論文, 民89[10]Chen S.-L., Wu K.-C., “Contouring Control of Smooth Paths for Multiaxis Motion Systems Based on Equivalent Errors,” IEEE Trans. Control System Technology, Vol. 15, No. 6, pp. 363-370, Nov. 2007[11]Vadim I. Utkin, “Sliding Modes in Control and Optimization, ” Springer-Verlag, 1992[12]Alexander Wwinmann, Uncertain Models and Robust Control, Springer-Verlag Wien New York, 1991[13]Alberto Isidori, Nonlinear Control System, Springer-Verlag New York, 1995[14]A.M. Bloch, Nonholonomic Mechanics and Control, Springer-Verlag New York, 2003[15]Hassan K. Khalil, Nonlinear systems, Macmillan Pub. Co. New York 1992[16]Edge C. YEH, Shyh-Leh CHEN, “Nonlinear Attitude Dynamics of Twin Cycle with Feedback Control,” Vehicle System Dynamics, Vol.20, pp. 79-106, 1911[17]蔡源政, “拘束多軸系統循跡控制之探討暨並聯式機構循跡之應用,” 國立中正大學機械工程研究所碩士論文, 民93[18]Guangyan Xu, Danwei Wang, Keliang Zhou, “Robust Control of Full State Tracking of a Wheeled Mobile Robot,” Proceedings of the IEEE Conference on Decision and Control Sydney, Australia, 2000, pp. 3007-3012.[19]Alessio Salerno, Jorge Angeles, “On the Nonlinear Controllability of a Quasiholonomic Mobile Robot,” Proceeding of the 2003 IEEE Internal Conference on Robotics and Automation, Taiwan, 2003, pp. 3379-3384.[20]Dianwei Qian, Jianqiang Yi, Dongbin Zhao, “Robust Control Using Sliding Mode for a Class of Under-Actuated System With Mismatched Uncertainties,” Proceeding of the 2007 IEEE Internal Conference on Robotics and Automation, Roma, 2007, pp. 1449-1454.[21]Stefan LeBel, Luis Rodrigues, “Piecewise-Affine Parameter-Varying Control of Wheeled Mobile Robots,” Proceeding of the 2008 American Control Conference, 2008, pp. 195-200.[22]Tianmiao Wang, Bin Wang, Hongxing Wei, Yunan Cao, Meng Wang, Zili Shao, “Staying-Alive and Engery-Efficient Path Planning for Mobile Robots,” Proceeding of the 2008 American Control Conference, 2008, pp. 868-873.[23]Carlos F. Aguilar-Ibanez, Oscar. O. Gutierrez F., Miguel S. Suarez Castanon, “Stabilization of strongly damping inertia wheel pendulum by a nested saturatiom functions,” Proceeding of the 2008 American Control Conference, 2008, pp. 3434-3439.[24]Feng Xie and Rafael Fierro, “First-State Contractive Model Predictive Control of Nonholonomic Mobile Robots,” Proceeding of the 2008 American Control Conference, 2008, pp. 3494-3499.[25]Dariusz Pazderski, Krzysztof Kozlowski, “Trajectory Tracking of Underactuated Skid-Steering Robot,” Proceeding of the 2008 American Control Conference, 2008, pp. 3506-3511.[26]Giannis P. Roussos, Dimos V. Dimarogonas, Kostas J. Kyriakopoulos, “3D Navigation and Collision Avoidance for a Non-Holonomic Vehicle,” Proceeding of the 2008 American Control Conference, 2008, pp. 3512-3517.[27]Jennie Cochran, Nima Ghods, Miroslav Krstic, “3D Nonholonomic Source Seeking Without Position Measurement,” Proceeding of the 2008 American Control Conference, 2008, pp. 3518-3523.[28]Yoshihiko Miyasato, “Adaptive Control of Nonholonomic Mobile Robot Based on Inverse Optimality,” Proceeding of the 2008 American Control Conference, 2008, pp. 3524-3529.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 以等效誤差為基礎之多軸運動系統循跡控制 2 兩輪式智慧型機器人之設計與實現 3 拘束多軸系統循跡控制之探討暨並聯式機構循跡之應用 4 雙輪倒單擺車輛系統之複雜路徑循跡控制與實驗驗證 5 雙輪倒單擺車輛系統之影像伺服循跡控制

 無相關期刊

 1 雙輪倒單擺車輛系統之複雜路徑循跡控制與實驗驗證 2 整合NURBS曲線之等效誤差循跡控制 3 雙輪倒單擺車輛系統之影像伺服循跡控制 4 雙軸輪廓誤差學習控制之性能分析 5 基於等效輪廓誤差之雙軸線上學習控制與學習控制之轉換時機探討 6 雙輪倒單擺車設計與穩定控制 7 以等效輪廓誤差為基礎之多軸輪廓學習控制 8 不平滑路徑之五軸循跡控制 9 五軸系統之ILC循跡控制 10 以等效誤差為基礎之數位循跡控制 11 以等效誤差為基礎之多軸運動系統循跡控制 12 雙手臂加工系統五自由度輪廓誤差控制 13 深度神經網路應用於雙軸平台之熱誤差估測 14 雙機械手臂加工系統之控制與實驗 15 二點葉蟎(Tetranychus urticae)在不同溫度下之生命表與小黑花椿象(Orius strigicollis)防治效能

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室