跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/17 23:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃金發
研究生(外文):Jin-fa Huang
論文名稱:Al2O3顆粒強化鋁基複合材料摩擦攪拌銲道特性分析
論文名稱(外文):Characteristics of Friction Stir Weld of Al2O3 Particulate-reinforced Aluminum Matrix Composites
指導教授:敖仲寧敖仲寧引用關係
指導教授(外文):Jong-ning Aoh
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:111
中文關鍵詞:顆粒強化鋁基複合材料摩擦攪拌銲接金屬塑性流動分析動態負荷分析
外文關鍵詞:metal plastic flowmetal matrix compositeFriction stir weldingdynamic loading
相關次數:
  • 被引用被引用:5
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  摩擦攪拌銲接法(FSW)是新興的接合製程,在鋁合金的銲接上已有相當程度之工業應用,包括汽車、軌道車輛、航空器與船舶等。但FSW銲道強度下降若無後續熱處理仍是未解決的問題。氧化鋁顆粒強化鋁合金是質輕強度高的金屬基複材,使用在高強度輕量結構之航太元件中已有應用。而利用摩擦攪拌銲接合氧化鋁顆粒強化複合材料,不但在工業上未見,在研究文獻上亦甚為有限,是極具潛力的研究課題。
  本研究將針對Al(6061)/Al2O3p板材進行摩擦攪拌銲接對接研究,分別對於鋁基複材Al2O3之體積百分比為10% , 15% 及20%進行FSW接合技術探討,並視情況改變刀具進給速率以求得最佳銲合參數之範圍,在銲接過程中量測三軸向動態負荷歷程,藉以討論動態負荷歷程對於銲接製程之影響,並探討銲道顯微結構組織、硬度分析及拉伸強度,藉此了解摩擦攪拌銲接之銲合機理與銲道特性,期望能得到最佳銲合參數。
  本研究目前已成札Z合三種體積百分比之板材,在硬度分佈方面,銲道的硬度大於母材的硬度值;在拉伸強度方面,拉伸試片斷裂面皆在母材區,拉伸結果與母材拉伸結果近似,因此推測銲道的強度大於母材的強度。除了機械性質分析以及銲道觀察外,本研究在銲接製程中以動量計量測銲接時的動態負荷,並且比較動態負荷與銲道品質的相關性,期待未來能架設溫度量測系統,探討摩擦攪拌銲接中的溫度分佈,將三軸向動態負荷與溫度分佈建立相互關係。
  Friction stir welding (FSW) is an innovative welding process in which the metal can be welded or stirred together by a high speed rotating tool (probe) using a milling machine. The process has been successfully applied to join aluminum and many other alloys. Particulate-reinforced metal matrix composite Al/Al2O3p is a light weighted high strength composite material developed for light weight and high strength applications. Welding of Al/Al2O3p has always been a problem due to melting and solidification resulting in clustering of Al2O3 powder. FSW will be a potentially appropriate process for joining Al/Al2O3p composites. The objective of this project is to develop the FSW process for this composite for light weight high strength structural applications.
  In this investigation, the friction stir welding was applied to butt on Al2O3 particulate-reinforced aluminum matrix composites. The material used was a particulate-reinforced Al2O3/6061 aluminum alloy with 10%, 15% and 20% volume fraction of Al2O3 powder. The welding surface and the microstructure of nugget were observed. Hardness and tensile strength of the welded specimens were evaluated. Dynamic load history during FSW was measured. From the results above, the characteristics of nugget, the flow pattern, the mechanical properties and the relationship between them were studied.
  Through appropriate combination of welding parameters, defect-free friction stir welds were successfully achieved. The aspect of mechanical characteristics, the hardness in the friction stir welds were above the hardness of base material. The tensile strength in the friction stir welds are approximately at the same level as the tensile strength of base material. The results explain that the hardness and tensile strength were improved in the friction stir welds.
摘 要......................................................I
Abstract....................................................II
致 謝......................................................III
目 錄......................................................IV
圖目錄......................................................VI
表目錄......................................................X
第一章 緒論................................................1
1-1 前言...................................................1
1-2 金屬基複合材料.........................................5
1-3 摩擦攪拌銲接製程分析...................................7
1-3-1 摩擦攪拌銲接介紹....................................7
1-3-2 摩擦攪拌銲接銲道橫截面區域定義......................9
1-3-3 摩擦攪拌銲接參數....................................12
第二章 文獻回顧............................................14
2-1 摩擦攪拌銲接研究領域...................................14
2-2 摩擦攪拌銲道顯微結構...................................14
2-3 摩擦攪拌銲道流動性行為.................................16
2-4 摩擦攪拌銲接銲道與機械性質.............................19
2-5 動態再結晶(Dynamic Recrystallization)機制..............21
2-6 摩擦攪拌銲接負荷歷程...................................23
2-7 摩擦攪拌銲接製程運用於金屬基複合材料...................25
2-8 文獻歸納...............................................30
2-9 研究動機與目的.........................................31
第三章 研究方法與流程......................................33
3-1 研究流程...............................................33
3-2 實驗試片與刀具.........................................35
3-2-1 實驗試片............................................35
3-2-2 實驗刀具............................................37
3-3 摩擦攪拌銲接設備與量測系統.............................38
3-3-1摩擦攪拌銲接製程設備.................................38
3-3-2 動量計力量量測系統..................................39
3-4 摩擦攪拌銲接夾治具的設計與製作.........................41
3-5 後處理製程分析設備.....................................42
第四章 結果與討論 ..........................................43
4-1 銲道表面觀察...........................................44
4-2 銲道橫截面金相顯微結構.................................47
4-2 摩擦攪拌銲接銲道機械性質...............................63
4-2-1 銲道硬度測試........................................63
4-2-2 拉伸試驗............................................67
4-2-3 拉伸斷面分析........................................73
4-3 摩擦攪拌銲接製程三軸向動態負荷.........................82
第五章 結論與未來方向......................................87
5-1 結論 ...................................................87
5-2 未來方向...............................................90
參考文獻....................................................91
[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes. G.B. Patent Application No 9125978.8; Dec 1991, U.S. Patent No. 5360317, Oct. 1995.
[2] 張維麟, “6061鋁合金及其顆粒強化銲道之摩擦攪拌銲接研究”, 國立中正大學機械工程研究所碩士論文, 2005.
[3] M. Guerraa, C. Schmidta, J.C. McClurea, L.E. Murra, A.C. Nunesb, “Flow patterns during friction stir welding”, Materials Characterization, 49, pp. 95-101, 2003.
[4] L.E. Murr and J.C. McClure, “Solid-State flow visualization in the friction stir welding of 2024 Al to 6061 Al”, Scripta Materialia, Vol. 40, No 9, pp. 1041–1046, 1999.
[5] C.J. Dawes, E.J.R. Spurgin and D.G. Staines, “Friction stir welding aluminum alloy 5083-increased welding speed”, Aug. 1999, TWI Report.
[6] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.C. Murch, P.Temple-Smith and C.J. Dawes(TWI), “Improvements relating to friction welding”, European Patent Specification 0615480 B1.
[7] W.M. Thomas, P.L. Threadgill and E.D. Nicholas, “The feasibility of friction stir welding steel”, Slightly modified version published in Science and Technology of Welding and Joining, Vol. 4, No. 6, pp. 365-372, 1999.
[8] http://www24.casi.osaka-u.ac.jp/maeda/
[9] C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, “Effect of friction stir welding on microstructure of 7075 aluminum”, Scripta Mater, Vol. 36, No. 1, pp. 69-75, 1997.
[10] G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, F.R. Vega, “Microstructural aspects of the friction stir welding of 6061-T6 aluminum”, Scripta Materialia, Vol. 37, No.3, pp. 355-361, 1997.
[11] K.V. Jata, S.L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys”, Scripta Mater, Vol. 43, pp. 743-749, 2000.
[12] S. Benavides, Y. Li, L.E. Murr, D. Brown, J.C. McClure, “Low-temperature friction stir welding of 2024 aluminum”, Scripta Mater, Vol. 41, pp. 809-815, 1999.
[13] R.W. Fonda, J.F. Bingert, K.J. Colligan, “Development of grain structure during friction stir welding”, Scripta Materialia, Vol. 51, pp. 243-248, 2004.
[14] Hanadi G. Salem, “Friction stir weld evolution of dynamically recrystallized AA 2095 weldments”, Scripta Materialia, Vol. 49, pp. 1103–1110, 2003.
[15] Seung Hwan C. Park, Yutaka S. Sato, Hiroyuki Kokawa, “Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test”, Scripta Materialia, Vol. 49, pp. 161-166, 2003..
[16] R.S. Mishra, Z.Y. Ma, “Friction stir welding and processing, Materials Science and Engineering”, Vol. 50, pp. 1-78, 2005.
[17] L.A.C. De Filippis, P. Cavaliere, “Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminum alloy”, Materials and Design, Vol. 28, pp. 1124–1129, 2007.
[18] W.J. Arbegast, Modeling Friction Stir Joining as a Metalworking Process, Published in Hot Deformation of Aluminum Alloys III, Z. Jin, ed., TMS (The Minerals, Metals, and Materials Society), 2003.
[19] K. Colligan, “Material flow behavior during friction stir welding of aluminum”, Weld J July, pp. 229-237, 1999.
[20] M.A. Sutton , B. Yang, A.P. Reynolds, R. Taylor, “Microstructural studies of friction stir welds in 2024-T3 aluminum”, Materials Science and Engineering, pp. 160–166, 2002.
[21] G.R. Bradley, M.N. James, “Geometry and Microstructure of Metal Inert Gas and Friction Stir Welded AL Alloy 5383-H321”, October 2000.
[22] Y.J. Kwon, I. Shigematsu, N. Saito, “Mechanical properties of fine-grained aluminum alloy produced by friction stir process”, Scripta Materialia, Vol. 49, pp. 785-789, 2003.
[23] M. Peel, A. Steuwer, M. Preuss, P.J. Withers, “Microstructure mechanical properties and residual stresses as a function of welding speed in aluminum AA5083 friction stir welds”, Acta Materialia, Vol. 51, pp. 4791-4801, 2003.
[24] M.W. Mahoney, C.G. Rhodes, J.C. Flintoff, R.A. Spurling, W.H. Bingel, “Properties of friction-stir-welded 7050 T651 Aluminum”, Mater Trans, Vol. 29A, pp. 1955, 1998.
[25] K.N. Krishnan, “On the formation of onion rings in friction stir welds”, Materials Science and Engineering, Vol. A327, pp. 246-251, 2002.
[26] L. Ying, L.E. Murr and J.C. McClure,“Solid-State flow visualization in the friction-stir welding of 2024 Al To 6061 Al”, Scripta Materialia, Vol. 40, pp. 1041-1046, 1999.
[27] G.J. Fernandez, L.E. Murr, “Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite”, Materials Characterization, Vol. 52, pp. 65-75, 2004.
[28] W.M. Thomas, “Friction stir welding and related friction process characteristics”, Presented at INALCO ''98, 7th International Conference on Joints in Aluminum Abington, Cambridge, UK 15-17 April 1998.
[29] G.M. Xie, Z.Y. Maa and L. Geng, “Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper”, Scripta Materialia, Vol. 57, pp. 73–76, 2007.
[30] H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi, “Friction stir welding of carbon steels”, Materials Science and Engineering, Vol. A 429, pp. 50-57, 2006.
[31] W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, S.B. Jung, “Microstructural investigation of friction stir welded pure titanium”, Materials Letters, Vol. 59, pp. 3315-3318, 2005.
[32] Jiuchun Yan, Zhiwu Xu, Zhiyuan Li, Lei Li, Shiqin Yang, “Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring”, Scripta Materialia, Vol. 53, pp. 585-589, 2005.
[33] K.N. Krishnan, “On the formation of onion rings in friction stir welds”, Materials Science and Engineering, Vol. A327, pp. 246–251, 2002.
[34] J. Kobata, Y. Takigawa, S.W. Chung, H.Tsuda, H. Kimura, K. Higashi, “Nanoscale amorphous band-like structure induced by friction stir processing in Zr55Al10Ni5 bulk metallic glass”, Materials Letters, Vol. 61, pp. 3771-3773, 2007.
[35] D. Storjohann, S.S. Babu, S. A. David and Phil Sklad, “Friction Stir Welding of Aluminum Metal Matrix Composites”, 4th International symposium on Friction Stir Welding, 2003.
[36] R.W. Fonda, J.F. Bingert, K.J. Colligan, “Development of grain structure during friction stir welding”, Scripta Materialia, Vol. 51, pp. 243–248, 2004.
[37] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, “Superplastic deformation behaviour of friction stir processed 7075Al alloy”, Acta Materialia, Vol. 50, pp. 4419-4430, 2002.
[38] G. Liu, L.E. Murr, CS Niou, J.C. McClure, F.R. Vega, “Microstructural aspects of the friction-stir welding of 6061-T6 aluminum”, PII S1359-6462 00093-6,1997.
[39] H.N.B. Schmidt, T.L. Dickerson, J.H. Hattel, “Material flow in butt friction stir welds in AA2024-T3”, Acta Materialia, Vol. 54, pp. 1199-1209, 2006.
[40] R. Nandan, G.G. Roy, T.J. Lienert, T. Debroy, “Three-dimensional heat and material flow during friction stir welding of mild steel”, Acta Materialia, Vol. 55, pp. 883-895, 2007.
[41] 林鼎崴, “鋁合金摩擦攪拌銲接的銲道特性與銲合機理分析”, 國立中正大學機械工程研究所碩士論文, 2006.
[42] Y.J. Kwon, N. Saito; I. Shigematsu, Journal of Materials Science Letters 21, Oct 1, pp. 1473-1476, 2002.
[43] 胡哲明, “摩擦攪拌製程之應變率對奈米氧化鋁粉均勻分佈與機械性質的影響”, 國立中山大學材料工程研究所碩士論文, 2004.
[44] Y.S. Sato, F. Yamashita, Y. Sugiura, S.H.C. Park, H. Kokawa, “FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminum alloy”, Scripta Materialia, Vol. 50, pp. 365-369, 2004.
[45] Y.S. Sato, H. Takauchi, S.H.C. Pard, H. Kokawa, “Characteristics of the kissing-bond in friction stir welded Al alloy 1050”, Meterials Science and Engineering, Vol. A405, pp. 333-338, 2005.
[46] M.J. Jone, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, J.H. Driver, “Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy”, Scripta Materialia, Vol. 52, pp. 693-697, 2005.
[47] S.W. Kallee, “Friction stir welding - how to weld aluminum without melting it”, TWI Ltd, Granta Park, Great Abington, Cambridge CB1 6AL, UK.
[48] Y.S. Sato, Y. Kurihara, S.H.C. Park, H. Kokawa, N. Tsuji, “Friction stir welding of ultrafine grained AL alloy 1100 produced by accumulative roll-bonding”, Scripta Materialia, Vol. 50, pp. 57-60, 2004.
[49] W.M. Thomas, E.D. Nicholas and S.D. Smith, “Friction Stir Welding - tool developments”, TWI Ltd, Granta Park, Great Abington, Cambridge CB1 6AL, United Kingdom.
[50] P.A. Colegrove and P.L. Threadgill, “Development of the TrivexTM friction stir welding tool”, TWI Ltd, Granta Park, Great Abington, Cambridge CB1 6AL, United Kingdom.
[51] H.J. McQueen, M.E. Kassner, “Comments on a model of continuous dynamic recrystallization proposed for aluminum”, Scripta Materialia, Vol. 51, pp. 461-465, 2004.
[52] K.V. Jata and S.L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys”, Scripta mater, Vol. 43, pp. 743-749, 2000.
[53] J. Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, “Microstructural investigation of friction stir welded 7050-T651 aluminum”, Acta Materialia, Vol. 51, pp. 713-729, 2003.
[54] J. Q. Su , T.W. Nelson and C.J. Sterling, J. Mater, “A new route to bulk nanocrystalline materials”, Journal of Materials Research, Vol. 18, pp. 1757-1760, 2003.
[55] J.Q. Su, T.W. Nelson, C.J. Sterling, “Microstructure evolution during FSW/FSP of high strength aluminum alloys”, Materials Science and Engineering, Vol. A405, pp. 277-286, 2005.
[56] J. Pew, “Effects of Spindle Speed on Welding Forces”, BYU, http://www.et.byu.edu/groups/fsw/index.html
[57] J.E. Mitchell, G.E. Cook, A.M. Strauss, “Force sensing in friction stir welding”, 6th International Trends in Welding Research Conference Proceedings, 15-19 April 2002, Pine Mountain. GA, ASM International, 2003.
[58] S. Vijay, Z. Srdja, K. Radovan, “Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061”, International Journal of Machine Tools & Manufacture, 2005.
[59] 林耀隆, “摩擦攪拌銲接過程之作用力和攪拌能量之實驗研究”, 國立中山大學機械與機電工程研究所碩士論文, 2006.
[60] K. Kumar, Satish V. Kailas, “On the role of axial load and the effect of interface position on the tensile strength of a friction stir welded aluminium alloy”, Materials and Design, 2007.
[61] H.J. Liu, J.C. Feng, H. Fujii, K. Nogi, “Wear characteristics of a WC-Co tool in friction stir welding of AC4A+30%SiCp composite”, Machine Tools & Manufacture, Vol. 45, pp. 1635-1639, 2005.
[62] L.M. Marzoli, A.v. Strombeck, J.F. Dos Santos, C. Gambaro, L.M. Volpone, “Friction stir welding of an AA6061/Al2O3/20p reinforced alloy”, Composite Science And Technology, Vol. 66, pp. 363-371, 2006.
[63] L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, “Microstructure, tensile and fatigue properties of AA6061/20 vol.%Al2O3p friction stir welded joints”, Composites: Part A, Vol. 38, pp. 1200-1210, 2007.
[64] L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, “Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite”, Composites Science and Technology, Vol. 67, pp. 605-615, 2007.
[65] A. Squillace, A. De Fenzo, G. Giorleo, F. Bellucci, “A comparison between FSW and TIG welding techniques : modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints”, Journal of Materials Processing Technology, pp. 97-105, 2004.
[66] 徐千富, “顆粒強化之鋁合金摩擦攪拌銲道特性分析研究”, 國立中正大學機械工程研究所碩士論文, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊