跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱垂德
研究生(外文):Chui-Te Chiu
論文名稱:螺桿受研磨切削力之動態行為對表面粗糙度之影響
論文名稱(外文):The Effect of Dynamic Behavior on Surface Roughness of Ball Screw under the Grinding Force
指導教授:蕭庭郎
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:99
中文關鍵詞:研磨切削表面粗糙度中心支撐架螺桿
外文關鍵詞:center supportsurface roughnessgrindngball screw
相關次數:
  • 被引用被引用:2
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
滾珠螺桿為目前精密機械設備上最常使用的傳動元件,包括精密工具機、產業機械、電子機械及輸送機械等。有鑑於其應用皆在高精度控制,滾珠螺桿在製程即有高精度的要求,而具有可加工淬硬材料及極精密加工特性的砂輪研磨即成為目前製作滾珠螺桿極重要的製程。本論文將探討研磨切削製程的動態行為及模擬工件經加工之表面粗糙度。所探討的系統包含工件及其支撐、砂輪及其主軸。工件的支撐包含研磨機頭座及尾座的頂心及中心支撐架,而砂輪主軸考慮一具靜液壓軸承之主軸。
本研究將應用能量法結合大域模態假設法推導出螺桿受移動研磨切削力作用的運動方程式,再由朗吉-庫塔 (Runge-Kutta Method) 逐步積分法求得系統在移動負載下的動態響應。最後利用高斯分佈法模擬砂輪磨粒高度的分佈情形,考慮加工時螺桿及砂輪的位移,計算各個磨粒的作用深度,模擬螺桿加工後的表面粗糙度。
數值結果顯示,研磨過程中工件有無加入支撐架抑振對研磨過程的振動有明顯影響,可降低約90%的振動量。影響研磨切削力最大的參數為切削深度,切削深度和最大振動量呈線性關係,可藉已知的加工經驗預測加工振動情形。使用砂輪研磨之目的在求得良好工件表面,磨粒粒度的影響大於磨粒組織度。
Ballscrews are the most common transmit element used in precision machines now, including precision machine tools, industrial machinery, electronic machinery and transport machinery. According to the application all in high precision, ballscrews need high class asked at its manufacture process. Due to the characteristics of manufacturing hard materials and precise manufacturing process, grinding can be used for manufacturing ballscrews. The dynamic behavior of a workpiece under a moving grinding force will be discussed and the workpiece surface roughness will be simulated in this study, and the system is inclusive of the workpiece, headstock center, back poppet, center supports, grinding wheel and the grinding wheel spindle with hydrostatic bearing.
The system equations of motion are derived by Lagragian approach combined with GAMM in this study. The transient responses of the system due to a moving force are evaluated by applying Runge-Kutta method. Then we simulate the grain height distribution on the grinding wheel, considering transient response on the ballscrews and the grinding wheel. Last, the workpiece surface roughness could be simulated via calculating the depth of all working grains.
On the basis of the results, the vibration in grinding process has obvious influence by using a center support. The center support can reduce 90% vibration. The most important parameter in the grinding process is the depth of cutting. An equation can be found to predict the maximum response by the depth of cutting. The purpose of using grinding process is the workpiece need fine surface roughness. The workpiece surface roughness is influenced by the grain size more than the structure numbers can be.
I. INTRODUCTION 1
1.1 Motivation of Research 1
1.2 Literature Review 1
1.3 Outline 3
II. SYSTEM EQUATION OF MOTION 5
2.1 Modeling of a Ballscrew 5
2.2 Modeling of a Grinding Wheel and Its Spindle 7
2.3 Modeling of a Grinding Force 11
2.4 Lagrangian Approach 14
III. SIMULATION SURFACE ROUGHNESS 24
3.1 Simulation the Grain Distribution 24
3.2 Determination of the Workpiece Roughness 26
IV. NUMERICAL RESULTS AND DISCUSSION 29
4.1 Introduction 29
4.2 Comparison of Number of Center Supports 33
4.3 Comparison of cutting depth 46
4.4 Comparison of Parameters of the Center Supports 60
4.5 Comparison of the Grinding Wheel Topography 76
4.6 Comparison of Workpiece Surface Roughness 83
V. CONCLUSION AND FUTURE STUDY 95
5.1 Conclusion 95
5.2 Future Study 96
Abu-Hilal, M. and Mohsen, M., 2000, “Vibration of Beams with General Boundary Conditions Due to a Moving Harmonic Load,” Journal of Sound and Vibration, vol. 232, no. 4, pp. 703-717
Alfares, M. and Elsharkawy, A., 2000, “Effect of Grinding Forces on the Vibration of Grinding Machine Spindle System,” International Journal of Machine Tools and Manufacture, vol. 40, no. 14, pp. 2003~2030
Alfares, M. and Elsharkawy, A., 2003, “Effects of Axial Preloading of Angular Contact Ball Bearings on the Dynamics of a Grinding Machine Spindle System,” Journal of Materials Processing Technology, vol. 136, no. 1-3, pp. 48-59
Blunt, L. and Ebdon, S., 1996, “The Application of Three-Dimensional Surface Measurement Techniques to Characterizing Grinding Wheel Topography,” International Journal of Machine Tools and Manufacture, vol. 36, no. 11, pp. 1207-1226
Chen, X. and Rowe, W. B., 1996, “Analysis and Simulation of the Grinding Process. Part І. Generation of the Grinding Wheel Surface,” International Journal of Machine Tools and Manufacture, vol. 36, no. 8, pp. 871-882
Katz, R., Lee, C. W., Ulsoy, A. G. And Scott, R. A., 1988, “The Dynamic Response of a Rotating Shaft Subject to a Moving Load,” Journal of Sound and Vibration, vol. 122, no. 1, pp. 131~148
Lee, H. P., 1995, “Dynamic Response of a Rotating Timoshenko Shaft Subject to Axial Forces and Moving Loads,” Journal of Sound and Vibration, vol. 181, no. 1, pp. 169~177
Lee, H. P., 1996, “Dynamic Response of a Beam on Multiple Supports with a Moving Mass,” Structural Engineering and Mechanics, vol. 4, no. 3, pp. 303~312
Li, H. and Shin, Y. C., 2006, “Wheel Regenerative Chatter of Surface Grinding,” Journal of Manufacturing Science and Engineering, vol. 128, no. 2, pp. 393-403
Li, H. and Shin, Y. C., 2006, “A Time-Domain Dynamic Model for Chatter Prediction of Cylindrical Plunge Grinding Processes,” Journal of Manufacturing Science and Engineering, vol. 128, no. 2, pp. 404-415
Li, H. and Shin, Y. C., 2007, “A Study on Chatter Boundaries of Cylindrical Plunge Grinding with Process Condition-Dependent Dynamics,” International Journal of Machine Tools and Manufacture, vol. 47, no. 10, pp. 1563-1572
Liu, Z. and Payre, G., 2007, “Stability Analysis of Doubly Regenerative Cylindrical Grinding Process,” Journal of Sound and Vibration, vol. 301, no. 3-5, pp. 950-962
Malkin, S., 1989, “Theory and Applications of Machining with Abrasives,” University of Massachusetts
Orynski, F. and Pawlowski, W., 1999, “The Influence of Grinding Process on Forced Vibration Damping in Headstock of Grinding Wheel of Cylindrical Grinder,” International Journal of Machine Tools and Manufacture, vol. 39, no. 2, pp. 229-235
Orynski, F and Pawlowski, W., 2002, “The Mathematical Description of Dynamics of the Cylindrical Grinder,” International Journal of Machine Tools and Manufacture, vol. 42, no. 7, pp. 773-780
Ramos, J. C., Vinolas, J. and Nieto, F. J., 2001, “A Simplified Methodology to Determine the Cutting Stiffness and the Contact Stiffness in the Plunge Grinding Process,” International Journal of Machine Tools and Manufacture, vol. 41, no. 1, pp. 33-49
Salisbury, E. J., Domala, K. V., Moon, K. S., Miller, M. H. and Sutherland, J. W., 2001, “A Three-Dimensional Model for the Surface Texture in Surface Grinding, Part 1: Surface Generation Model,” Journal of Manufacturing Science and Engineering, vol. 123, pp. 576~581
Salisbury, E. J., Domala, K. V., Moon, K. S., Miller, M. H. and Sutherland, J. W., 2001, “A Three-Dimensional Model for the Surface Texture in Surface Grinding, Part 2: Grinding Wheel Surface Texture Model,” Journal of Manufacturing Science and Engineering, vol. 123, pp. 582~590
Shiau, T. N., Huang, K. H. and Hsu, W. C., 2006, “Dynamic Response and Stability of a Rotating Ball Screw under a Moving Skew Load,” Journal of the Chinese Society of Mechanical Engineers, vol. 27, no. 3, pp. 297-306
Shiau, T. N., Chen, E. C., Huang, K. H. and Hsu, W. C., 2006, “Dynamic Response of a Spinning Timoshenko Beam with General Boundary Conditions under a Moving Skew Force Using Global Assumed Mode Method,” JSME International Journal, vol. 49, no. 2, pp. 401-410
Zhou, X. and Xi, F., 2002, “Modeling and Predicting Surface Roughness of the Grinding Process,” International Journal of Machine Tools and Manufacture, vol. 42, no. 8, pp. 969-977
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top