跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭書甫
研究生(外文):Shu-fu Kuo
論文名稱:Unbiased variable selection for functional regression trees
論文名稱(外文):Unbiased variable selection for functional regression trees
指導教授:史玉山史玉山引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:統計科學所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:18
中文關鍵詞:contingency tablesunbiasedfunctional regression treesvariable selection
外文關鍵詞:contingency tablesunbiasedfunctional regression treesvariable selection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
Functional regression tree is used to predict the response variable which is a random function taking values in some infinite dimension. A method has been proposed that adapts the usual exhaustive search method for functional responses. We show that the method has selection bias toward variables with more split points. A selection is therefore designed to eliminate variable selection bias. It controls bias through utilizing chi-squared test for two-way contingency tables.
Functional regression tree is used to predict the response variable which is a random function taking values in some infinite dimension. A method has been proposed that adapts the usual exhaustive search method for functional responses. We show that the method has selection bias toward variables with more split points. A selection is therefore designed to eliminate variable selection bias. It controls bias through utilizing chi-squared test for two-way contingency tables.
1 Introduction 2
2 Variable selection 4
2.1 Exhaustive search method.................... 4
2.2 Proposed method............................. 5
3 Simulations 8
3.1 Selection bias.............................. 8
3.2 Power....................................... 10
4 Conclusion 14
Bibliography 15
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C.J. (1984). Classification and Regression Trees. Wadsworth, Belmont.
Chaudhuri, D., Huang, M.-C., Loh, W.-Y., and Yao, R. (1994). Piesewise-polynomial regression trees. Statistica Sinica, 4:143-167.
Chaudhuri, D., Lo, W.-D., Loh, W.-Y., and Yang, C.-C. (1995). Generalized regression trees. Statistica Sinica, 5:641-666.
Csiszar, I. (1967). Information-type measures of difference of probability distributions and indirect observations. Studia Scientiarum Mathematicarum Hungarica, 2:299-318.
De''ath, G. (2002). Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology, 83:1105-1117.
Grosjean, P., Picheral, M., Warembourg, C., and Gorsky, G. (2004). Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system. ICES Journal of Marine Science, 61:518-525.
Hsiao, W.-C. and Shih, Y.-S. (2007). Splitting variable selection for multivariate regression trees. Statistics & Probability Letters, 77:265-271.
Larsen, D. R. and Speckman, P. L. (2004). Multivariate regression trees for analysis of abundance data. Biometrics, 60:543-549.
Lee, S. K. (2005). On generalized multivariate decision tree by using GEE. Computational Statistics & Data Analysis, 49:1105-1119.
Loh, W.-Y. (2002). Regression trees with unbiased variable selection and interaction detection. Statistica Sinica, 12:361-386.
Morgan, J. N. and Sonquist, J. A. (1963). Problems in analysis of survey data, and a proposal. Journal of the American Statistical Association, 58:415-434.
Nerini, D. and Ghattas, B. (2007). Classifying densities using functional regression trees: Applications in oceanology. Computational Statistics & Data Analysis, 51:4984-4993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top