跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/10 06:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李嘉華
研究生(外文):Chia-hua Li
論文名稱:InfluenceAnalysisforROCRegression
論文名稱(外文):Influence Analysis for ROC Regression
指導教授:黃郁芬黃郁芬引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:統計科學所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:42
外文關鍵詞:ROC curveROC regressioninfluence function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:731
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Receiver operating characteristic (ROC) curve is a technique for evaluate screening or diagnostic tests with not binary test results.
ROC regression analysis provides a method to evaluate
covariate effects which may infuence the test accuracy.
In ROC regression analysis, if we perturb one case in data, the ROC regression estimators estimated by using perturbed data may be more different than by complete data.
The character of estimators may be determined by this case while most of the data is essentially ignored. Therefore, we have interests in studying the influence of unusual observations in ROC regression analysis.
The perturbation theory provides a useful tool in sensitivity analysis.
In this thesis, we develop single-perturbation influence functions to detect the influential points for ROC regression.
A simulated data and a real data are provided to illustrate the applications of our approach.
1 Introduction 1
2 ROC regression and estimation method 3
2.1 ROC Regression.........................................3
2.2 Quasi-likelihood Estimation............................4
3 Influence Function for ROC Regression 6
3.1 Influence Function.....................................6
3.2 The Influence Function for Mean Parameter..............6
3.3 The Influence Function for ROC Regression..............9
3.4 Empirical Influence Function...........................11
3.5 Sample Influence Function for Mean Parameter...........12
3.6 Cut Points Selection for Influence Function............12
4 Example 13
4.1 A Simulated Data.......................................13
4.2 Application to Radiology Data..........................17
5 Conclusion 23
References 31
Appendix 33
Andrews, D. F. (1972), Plots of high-dimensional data, Biometrics, 28, 125-136.
Cook, R. D. and Weisberg, S. (1980), Characterizations of an empirical influence function for detecting influential cases in regression, Technometrics, 22, 495-508.
Devlin, S. J., Gnanadesikan, R., and Kettenring, J. R. (1975), Robuest estimation and outlier detection with correlation coefficients, Biometrika, 62, 531-546.
Hampel, F. (1968), Contributions tothe theory of robust estimation. Unpublished Ph.D. dissertation, Univ. of California, Berkeley.
Hampel, F. (1974), The influence curve and its role in estimation, Journal of the American Statistical Association, 69, 383-393.
Hinkley, D. V. (1977), Jackknifing in unbalanced situations, Technometrics, 19, 285-292.
Margaret Sullivan Pepe (1998), Three approaches to regression analysis of
receiver operating characteristic curves for continuous test results,
Biometrika, 54, 124-135.
McCullagh, P. and Nelder, J. A. (1983), Quasi-likelihood functions, Annals of Statistics, 11, 59-67.
Muller, C., Wassermann, H. J., Erlank, P., Klopper, J. F., Morkel, H. R. & Ellmann, A. (1989),
Optimization of density and contrast yielded by multiformat photographic imagers used for scintigraphy, Phys. Med. Biol., 34, 473-481.
N. Reid and H. Crepeau (1985), Influence functions for proportional
hazards regression, Biometrika, 72, 1-9.
Pregibon, D. (1979), Data analysis methods for generalized linear models.
Unpublished Ph.D. dissertation, University of Toronto.
Pregibon, D. (1981), Logistic regression diagnostics, Ann. Statist., 9, 705-724.
Reeds, J. A. (1976), On the definition of von Mises functionals. Unpublished Ph.D. dissertation, Harvard University, Dept. of Statistics.
Thompson, M. L. $&$ Zucchini, W. (1989), On the statistical analysis of ROC curves, Statist. Med., 8, 1277-1290.
Tukey, J.M. (1977), Exploratory Data Analysis, Addison-Wesley.
von Mises, R. (1947), On the asymptotic distribution of differentiable statistical functions, Ann. Math. Statist., 18, 309-348.
von Mises, R. (1964), Mathematical Theory of Probability and Statistics, Academic Press, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top