跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/26 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱守勇
研究生(外文):Shou-Yung Chu
論文名稱:利用改良式前進後退法求解輻射式配電系統負載潮流
論文名稱(外文):A Modified Forward and Backward Sweep Method for Radial Distribution Load Flow Analysis
指導教授:張文恭
指導教授(外文):Gary W. Chang
學位類別:博士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:149
中文關鍵詞:前進後退法實虛部解耦階梯法配電系統負載潮流
外文關鍵詞:Real and Imaginary DecompositionLoad FlowForward/Backward Sweep MethodLadder Network Iteration MethodDistribution System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:790
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:0
基波負載潮流分析是電力系統運轉與規劃最基本的工作。在理論分析上,我們往往將輸電系統視為平衡的三相系統。因此,輸電系統的負載潮流分析可以利用單相模式求解。然而配電系統因為先天上網路的非對稱關係,以及負載的不平衡,以致於傳統輸電系統的負載潮流分析方法,無法適用於配電系統中。此外,像牛頓拉佛森及高斯迭代等單相負載潮流分析法,也受限於配電系統的高電阻電抗比及輻射架構,而無法適用於配電系統負載潮流分析。因此,配電系統的負載潮流計算,必須尋求三相的求解分析方法才能完成。
本篇論文提出一套改良式的前進/後退三相配電系統負載潮流分析方法。在後退法中,我們利用克希和夫電流及電壓定律,求取系統每一線路電流及每一條線路上游匯流排或變壓器一次側的電壓。於前進法中,採用線性比例法則,求出變電所及具有分岐線之匯流排其指定電壓及計算電壓的實部及虛部比值。並利用匯流排指標,快速地決定出每一分支的末端匯流排位置。再將每一個分岐線匯流排或線路末端匯流排的計算電壓或初始電壓的實、虛部,乘以利用線性比例法則所求得的相對應實、虛部比值,以修正相對應匯流排的電壓值。整個迭代程序,直到變電所的計算電壓與指定電壓的差值,小於某一指定值才停止。
在所提出的三相配電系統負載潮流中,我們所考量的系統模型包括架空線路、地下電纜、不同接線型式的變壓器、集中式負載、均勻分佈式負載、電容器組以及汽電共生發電機模型等。我們利用美國電力電子工程師協會所提出的標準測試案例,依不同的系統負載、不同的系統它]及不同的線路電阻電抗比,進行模擬分析。藉由模擬結果,我們可以瞭解到,我們所提出的負載潮流分析方法,在計算速度上比前進/後退法及階梯法都來的快速,且並未因此而降低其精確性。
Load flow analysis is the most fundamental work for power system operation and planning. In transmission systems, the network is always treated as balanced. Then, the load flow problem for transmission system can be dealt by single-phase method. However, the distribution power system is unbalanced inherently because of unsymmetrical network and unbalanced loads. In such situation, the conventional load flow methods for transmission systems are not suitable for distribution systems. In addition, high R/X ratio and radial structure are also to restrict the use of single-phase load flow approaches. Therefore, the three-phase approaches are required for distribution system load flow studies.
The thesis proposes an improved forward/backward sweep algorithm for three-phase load flow analysis of radial distribution systems. In the backward sweep, the KCL and KVL are used to calculate each line current and the upstream bus voltage of each line or a transformer branch. Then, linear proportion principle for finding the real and imaginary ratios on each line section and bus index for fast mapping the terminal bus at each branch are exploited in the forward sweep to update the voltage at each junction or each terminal bus. The procedure stops after the mismatch of the calculated and the specified voltages at the substation is less than the predefined convergence tolerance. In the proposed method, the distribution component models including overhead lines, underground cables, different connecting type transformers, spot loads, distributed loads, capacitor banks and cogenerator are in consideration. The proposed solution algorithm has been described in details and tested by IEEE benchmark distribution systems with default system data, different system loadings, different power factors and different R/X ratios at different system loadings. Results show that the algorithm is accurate and computationally efficient in comparing with conventional forward/backward sweep method and ladder iteration method.
Table of Contents
Acknowledgment
Abstract I
Table of Contents V
List of Tables VIII
List of Figures XI
Chapter 1 Introduction 1
1.1 Motivations and Objectives 1
1.2 Contributions 2
1.3 Organization of Dissertation 4
Chapter 2 Component Models of Distribution System 6
2.1 Distribution Line Models 6
2.1.1 Overhead Lines 7
2.1.2 Underground Cables 11
2.1.2.1 Concentric Neutral Cable 12
2.1.2.2 Tape-Shielded Cable 15
2.2 Transformer Models 19
2.2.1 Delta–Grounded Wye Connection 20
2.2.2 Ungrounded Wye–Delta Step-Down Connection. 24
2.2.3 Grounded Wye–Grounded Wye Connection 25
2.2.4 Delta–Delta Connection 26
2.2.5 Open Wye–Open Delta 27
2.3 Load Models 27
2.3.1 Wye-Connected Loads 28
2.3.1.1 Constant PQ Loads 28
2.3.1.2 Constant Impedance Loads 29
2.3.1.3 Constant Current Loads 30
2.3.2 Delta-Connected Loads 30
2.3.2.1 Constant PQ Loads 31
2.3.2.2 Constant Impedance Loads 31
2.3.2.3 Constant Current Loads 32
2.4 Capacitor Models 32
2.4.1 Wye-Connected Capacitor 32
2.4.2 Delta-Connected Capacitor 33
2.5 Cogenerator Models 34
Chapter 3 Traditional Forward/Backward Methods 39
3.1 Forward/Backward Sweep Method 39
3.1.1 Backward Sweep 40
3.1.2 Forward Sweep. 41
3.1.3 Convergence Criterion 42
3.2 Ladder Iteration Method 44
3.2.1 Forward Sweep 44
3.2.2 Backward Sweep 45
3.2.3 Convergence Criterion 46
3.3 Comparisons of F/B Sweep and Ladder Iteration Method 47
Chapter 4 Modified Forward/Backward Sweep Method 49
4.1 Real and Imaginary Decompositions of Distribution Line and Transformer. 49
4.1.1 Voltage and Current Equations of Distribution Line 51
4.1.2 Voltage and Current Equations of Distribution Transformer 54
4.2 Linear Property of Decomposition Approach 58
4.3 Bus Indexing Scheme 60
4.4 Solution Algorithm 62
4.5 Convergence Behavior 65
Chapter 5 Case Studies 68
5.1 Benchmark Test Systems 68
5.2 Comparison for Default Systems 71
5.3 Effect of System Loading 79
5.4 Effect of System Power Factor 85
5.5 Effect of Different R/X Ratio at Different Loading Conditions 90
Chapter 6 Power System Education Software 101
6.1 GUI - Graphical User Interface 102
6.1.1 Control Panel 103
6.1.2 Property Editor 104
6.1.3 Alignment Tool 105
6.1.4 Callback Editor 106
6.1.5 Menu Editor 107
6.2 Architecture of Power System Education Software 108
6.3 Operation screen of PSES 110
Chapter 7 Conclusions and Future Work 123
References 126
Vita 131
References

[1]K. A. Birt, J. J. Graffy, and J. D. MC Donald, “Three phase load flow program ,” IEEE Trans. on Power Apparatus and Systems, vol. PAS-95, No. 1, pp. 59-65, Jan./Feb. 1976.
[2]H. L. Nguyen, “Newton-Raphson Method in Complex form,” IEEE Trans. on Power Systems, vol. 12, no. 3, pp. 1355-1359, August 1997
[3]F. Zhang and C. S. Cheng, “A modified Newton method for radial distribution system power flow analysis,” IEEE Trans. on Power Systems, vol. 12, no. 1, pp. 389-397, Feb. 1997.
[4]M. E. Baran and F. F. Wu, “Optima sizing of capacitors placed on a radial distribution system,” IEEE Trans. on Power Delivery, vol. 4, no. 1, pp. 735-743, January 1989.
[5]A. V. Garcia and M. G. Zago, “Three-phase fast decoupled power flow for distribution networks,” IEE Proc.-Generator Transmission Distribution, vol. 143, no. 2, pp. 188-192, March 1996.
[6]X. P. Zhang, “Fast three phase load flow methods,” IEEE Trans. on Power Systems, vol. 11, no. 3, pp. 1547-1554, August 1996.
[7]M. A. Laughton and A. O. M. Saleh, “Unified phase-coordinate load flow and fault analysis of polyphase networks,” International Journal of Electrical Power and Energy Systems, vol. 2, no. 4, pp. 181-192, 1980.
[8]D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo, “A compensation-based power flow method for weakly meshed distribution and transmission networks,” IEEE Trans. on Power System, vol. 3, no. 2, pp. 753-762, May 1988.
[9]W. H. Kersting, Distribution System Modeling and Analysis, CRC Press, 2002.
[10]T. H. Chen, M. S. Chen, K. J. Hwang, P. Kotas, and E. A. Chebli, “Distribution system power flow analysis – a rigid approach,” IEEE Trans. on Power Delivery, vol. 6, no. 3, pp. 1146-1152, July 1991.
[11]J. H. Teng, “A modified Gauss-Seidel algorithm of three-phase power flow analysis in distribution networks,” Electrical Power and Energy Systems, vol. 24, pp. 97-102, 2000.
[12]X. P. Zhang and H. Chen, “Asymmetrical three-phase load flow study based on symmetrical component theory,” IEE Proc.-Generator Transmission Distribution, vol. 141, no. 3, pp. 248-252, May 1994.
[13]A. G. Bhutad, S. V. Kulkarrni, and S. A. Khaparde, “Three-phase load flow methods for radial distribution networks,” TENCON 2003 Conference on Convergent Technologies, vol. 2, pp. 781-785, Oct. 2003.
[14]J. Nanda, M. S. Srinivas, M. Sharma, S. S. Dey, and L. L. Lai, “New findings on radial distribution system load flow algorithms,” Power Engineering Society Winter Meeting, vol. 2, pp. 1157-1161, Jan. 2000.
[15]J. Arrilaga and N. R. Watson, Computer Modelling of Electrical Power Systems, John Wiley & Sons, 2001.
[16]T. H. Chen, M. S. Chen, K. J. Hwang, P. Kotas, and E. A. Chebli, “Distribution System Power Flow Analysis - a Rigid Approach”, IEEE Trans. on Power Delivery, vol. 6, No. 3, July, 1991, pp. 1146-1152.
[17]W. H. Kersting, and W. H. Philips, “Distribution Feeder Line Models”, IEEE Trans. on Industry Application, vol. 31, No. 4, July-Aug., 1995, pp. 715-720.
[18]W. M. Lin, and J. H. Teng, "Three-Phase Distribution Network Fast Decoupled Power Flow Solutions," Electrical Power and Energy Systems, Vol. 22, No. 5, pp. 375-380, Jun. 2000.
[19]Z. Wang, F. Chen, and J. Li, “Implementing Transformer Nodal Admittance Matrices into Backward/Forward Sweep-Based Power Flow Analysis for Unbalanced Radial Distribution System”, IEEE Trans. on Power Systems, , vol. 19, No. 4, Nov., 2004, pp. 1831-1836.
[20]P. Xiao, D. C. Yu, and W. Yan, “A Unified Three-Phase Transformer Model for Distribution Load Flow Calculations”, IEEE Trans. on Power Systems, vol. 21, No. 1, Feb., 2006, pp. 153-159.
[21]M. P. Boyce, Handbook for Cogeneration and Combined Cycle Power Plants, New York, ASME Press, 2002.
[22]T. H. Chen, M. S. Chen, T. Inoue, P. Kotas, and E. A. Chebli, “Three-Phase Cogenerator and Transformer Models for Distribution System Analysis”, IEEE Trans. on Power Delivery, vol. 6, No. 4, Oct., 1991, pp. 1671-1681.
[23]J. J. Grainger, and W. D. Stevenson, Power System Analysis, McGraw-Hill, 1994.
[24]W. G. Tinney and C. E. Hart, “Power flow solutions by Newton’s method,” IEEE Trans. Power Apparatus System, PAS-86, pp. 1449-1457, 1967.
[25]B. Stott and O. Alsac, “Fast decoupled load flow,” IEEE Trans. Power Apparatus System, PAS-93, pp. 859-869. 1974.
[26]R. A. M. Van Amerongen, “A general-purpose version of the fast decoupled load flow,” IEEE Trans. Power System, vol. 4, No. 2, pp. 760-770, May, 1989.
[27]C. S. Cheng and D. Shirmohammadi, “A three-phase power flow method for real-time distribution system analysis,” IEEE Trans. Power System, vol. 10, pp. 671–679, May 1995.
[28]G. X. Luo and A. Semlyen, “Efficient load flow for large weakly meshed networks,” IEEE Trans. Power System, vol. 5, pp. 1309–1316, Nov. 1990.
[29]M. E. Baran and F. F. Wu, “Network Reconfiguration in Distribution systems for Loss Reduction and Load Balanceing”, IEEE Trans. on Power Delivery, vol. 4, no. 2, pp. 1401-1407, April, 1999.
[30]H. D. Chiang, J. C. Wang, and N. M. Karen, “Explicit Loss Formula, Voltage Formula and Current Flow Formula for Large-Scale Unbalanced Distribution Systems”, IEEE Trans. on Power Systems, vol. 12, no. 3, pp. 1061-1067, August 1997.
[31]A. G. Bhutad, S. V. Kulkami, and S. A. Khaparde, “Three phase load flow methods for radial distribution networks,” TENCON 2003 Conference on Convergent Technologies, vol 2, pp. 781-785, Oct. 2003.
[32]D. Thukaram, H. M. Wijekoon, and J. Jerome, “A robust three phase power flow algorithm for radial distribution systems”, Electric Power Systems Research, vol 50, No. 3, pp. 227-236, June, 1999.
[33]D. Rajicic, R. Ackovski, and R. Taleski, “Voltage correction power flow,” IEEE Trans. Power Delivery, vol. 9, pp. 1052-1062, April, 1991.
[34]W. H. Kersting and D. L. Mendive, "An Application of Ladder Network Theory to the Solution of Three-Phase Radial Load-Flow Problems," IEEE PES Winter Meeting, January 1976.
[35]H. H. William and E. K. Jack, Engineering Circuit Analysis, McGRAW-Hill, 1978.
[36]W. H. Kersting, “Radial distribution test feeders – IEEE Distribution Planning Working Group Report,” IEEE Trans. on Power Systems, vol. 6, no. 3, pp. 975-985, Aug. 1991.
[37]W. H. Kersting, “Radial distribution test feeders,” IEEE Power Eng. Soc Winter Meeting, vol. 2, pp. 908-912, Feb. 2001.
[38]J. Watkins and E. Mitchell, “A MATLAB Graphical User Interface for Linear Quadratic Control Design,” FIE 2000. 30th Annual, vol. 2, pp. F4E/7- F4E/10, Oct. 2000.
[39]F. Carreras and A. D. Snider, “A Matlab Educational Software Tool for Teaching Complex Analysis in Engineering,” IEEE Southeastcon ''98. Proceedings, pp. 204 – 207, April 1998.
[40]A. Azemi and E. E. Yaz, “Using Graphical User Interface Capabilities of MATLAB in Advanced Electrical Engineering Courses,” Decision and Control, IEEE Proceedings ,vol. 1, pp. 359-363, Dec. 1999.
[41]M. Kezunovic and Q.Chen, “A Novel Approach for Interactive Protection System Simulation,” IEEE Trans. on Power Delivery, vol. 12, no 2, pp. 668 – 674, April 1997.
[42]T. J. Overbye, P. W. Sauer, C. M. Marzinzik and G. Gross, “A User-Friendly Simulation Program for Teaching Power System Operations,” IEEE Transactions on Power Systems, vol. 10, no. 4, pp. 1725-1733, Nov. 1995.
[43]J. Yang and M. D. Anderson, “PowerGraf: an Educational Software Package for Power Systems Analysis and Design,” IEEE Transactions on Power Systems, vol. 13, no. 4, pp. 1205-1210, Nov. 1998.
[44]Using MATLAB, The Math Works, Inc., 1999.
[45]P. E. Eva and S. Anders, The Matlab 5 Handbook, ADDISON-WESLEY, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top