|
[1] B. C. Berndt, Ramanujan's Notebooks, Part I and II, Springer-Verlag, New York, 1985 and 1989. [2] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc. (2) 38 (1995), no. 2, 277--294. [3] D. Bowman and D. M. Bradley, Multiple polylogarithms: a brief survey, Contemp. Math. 291 (2001), 71--92. [4] J. M. Borwein and D. M. Bradley, Thirty-two Goldbach variations, Int. J. Number Theory 2 (2006), no. 1, 65--103. [5] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonv ek, Special values of multiple polylogarithms, Trans. Amer. Math. Soc. (3) 353 (2001), 907--941. [6] J. M. Borwein and R. Girgensohn, Evaluation of triple Euler sums, Electron, J. Combin. 3 (1996), no. 1, 1--27. [7] J. P. Buhler and R. E. Crandall, On the evaluation of Euler sums, Experiment. Math. 3 (1994), no. 4, 275--285. [8] K.-W. Chen and M. Eie, Explicit evaluations of extened Euler sums, J. Number Theory 117 (2006), 31--52. [9] M. Eie and W.-C. Liaw, Double Euler sums on Hurwitz zeta function, Rocky Mountain J. Math., to appear. [10] M. Eie and W.-C. Liaw, Euler sums with Dirichlet characters, Acta Arith, 130 (2007), no. 2, 99--125. [11] M. Eie and W.-C. Liaw, A restricted sum formula among multiple zeta values, submitted (2007). [12] M. Eie, W.-C. Liaw and Y. L. Ong, Euler sums on arithmetic progressions, New Zealand J. Math., to appear. [13] M. Eie, W.-C. Liaw and F.-Y. Yang, On evaluations of generalized Euler sums of even weight, Int. J. Number Theory 1 (2005), no. 2, 225--242. [14] M. Eie and Y. L. Ong, Explicit evaluations and reduction formulae for multiple zeta functions, 2007, preprint. [15] M. Eie and C.-S. Wei, A short proof for the sum formula and its generalitzation, submitted (2007). [16] P. Flajolet and B. Salvy. Euler sums and contour integral representations, Exp. Math. 7 (1) (1998), 15--35. [17] A. Granville, A decomposition of Riemann's zeta-function, Analytic number theory (Kyoto 1996), 95--101. [18] M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), no. 2, 275--290. [19] M. E. Hoffman and C. Moen, Sums of triple harmonic series, Pacific J. Number Theory 60 (1996), no. 2, 329--331. [20] C. Markett, Triple sums and the Riemann zeta function, J. Number Theory 48 (1994), no. 2, 113--132. [21] N. Nielsen, Die Gammafunktion, Chelsea, New York, 1965. [22] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), no. 1, 39--43. [23] Y. L. Ong, M. Eie and W.-C. Liaw, Explicit evaluations of triple Euler sums, Int. J. Number Theory, to appear. [24] R. Sitaramacchandra Rao and M. V. Subbarao, Transformation formulae for multiple series, Pacific J. Math. 113 (1984), 471--479. [25] R. Sitaramacchandra Rao, A formula of S. Ramanujan, J. Number Theory 25 (1) (1987), 1--19. [26] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, Cambridge, 1927. Reprinted 1996. [27] F. Y. Yang, Bernoulli identities and application to Euler sums, PhD dissertation, National Chung Cheng University, Minhsiung, Chiayi, Taiwan (2004). [28] D. Zagier, Values of zeta functions and their application, First European Congress of Mathematics, Vol. II (Pairs, 1992), Progr. Math., vol. 120, Birkhauser, Basel, 1994, 497--512.
|