跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 16:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張永祥
研究生(外文):Yong-Xiang Zhang
論文名稱:多重zeta值的Drinfeld積分表現
論文名稱(外文):Drinfeld integral representations of multiple zeta values
指導教授:余文卿余文卿引用關係
指導教授(外文):Minking Eie
學位類別:碩士
校院名稱:國立中正大學
系所名稱:應用數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:42
中文關鍵詞:三重尤拉和多重zeta值受限制的求和公式多重zeta值的求和公式Drinfeld對偶性定理Drinfeld積分多重zeta值
外文關鍵詞:The restricted sum formulaDrinfeld duality theoremDrinfeld integralThe sum formulaMultiple zeta valueTriple Euler sum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文的第一節裡,我們一開始先介紹古典尤拉和與多重 zeta 值。
第二節我們使用多重 zeta 值的積分表現式來處理 Drinfeld 對偶性定理。
第三節,利用多重 zeta 值的和可表成重積分形式以及透過連續兩次的變數變換,我們證明出多重 zeta 值的求和公式及受限制的求和公式。
在最後一節裡,我們處理含兩個變數的三重 zeta 值的等式且透過對特定的變數微分,得到當權是偶數時三重 zeta 值的計算公式。
在此,我們給出權等於 8 和 10 的精確三重 zeta 值。
In section 1, we begin with the introduction of classical Euler sums and multiple zeta values.
In section 2, the integral representation of multiple zeta values is used to deal with the Drinfeld duality theorem.
In section 3, applying a sum of multiple zeta values as a double integral and through two consecutive changes of variables, we demonstrate the sum formula and the restricted sum formula.
In the final section, we produce identities involving triple zeta values with two variables and perform differentiation with respect to the specified variable. This leads to the evaluation of triple Euler sums (the multiple zeta values for r=3) when the weight is even. Here we give the explicit evaluation of triple Euler sums of weight 8 and 10.
Abstract
1. Classical Euler sums and multiple zeta values
2. Drinfeld integral and duality
3. The sum formula and restricted sum formula
4. The evaluation of triple Euler sums for w=8,10
Reference
[1] B. C. Berndt, Ramanujan's Notebooks, Part I and II, Springer-Verlag, New York, 1985 and 1989.
[2] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc. (2) 38 (1995), no. 2, 277--294.
[3] D. Bowman and D. M. Bradley, Multiple polylogarithms: a brief survey, Contemp. Math. 291 (2001), 71--92.
[4] J. M. Borwein and D. M. Bradley, Thirty-two Goldbach variations, Int. J. Number Theory 2 (2006), no. 1, 65--103.
[5] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonv ek, Special values of multiple polylogarithms,
Trans. Amer. Math. Soc. (3) 353 (2001), 907--941.
[6] J. M. Borwein and R. Girgensohn, Evaluation of triple Euler sums, Electron, J. Combin. 3 (1996), no. 1, 1--27.
[7] J. P. Buhler and R. E. Crandall, On the evaluation of Euler sums, Experiment. Math. 3 (1994), no. 4, 275--285.
[8] K.-W. Chen and M. Eie, Explicit evaluations of extened Euler sums, J. Number Theory 117 (2006), 31--52.
[9] M. Eie and W.-C. Liaw, Double Euler sums on Hurwitz zeta function, Rocky Mountain J. Math., to appear.
[10] M. Eie and W.-C. Liaw, Euler sums with Dirichlet characters, Acta Arith, 130 (2007), no. 2, 99--125.
[11] M. Eie and W.-C. Liaw, A restricted sum formula among multiple zeta values, submitted (2007).
[12] M. Eie, W.-C. Liaw and Y. L. Ong, Euler sums on arithmetic progressions, New Zealand J. Math., to appear.
[13] M. Eie, W.-C. Liaw and F.-Y. Yang, On evaluations of generalized Euler sums of even weight, Int. J. Number Theory 1 (2005), no. 2, 225--242.
[14] M. Eie and Y. L. Ong, Explicit evaluations and reduction formulae for multiple zeta functions, 2007,
preprint.
[15] M. Eie and C.-S. Wei, A short proof for the sum formula and its generalitzation, submitted (2007).
[16] P. Flajolet and B. Salvy. Euler sums and contour integral representations, Exp. Math. 7 (1) (1998), 15--35.
[17] A. Granville, A decomposition of Riemann's zeta-function, Analytic number theory (Kyoto 1996), 95--101.
[18] M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), no. 2, 275--290.
[19] M. E. Hoffman and C. Moen, Sums of triple harmonic series, Pacific J. Number Theory 60 (1996), no. 2, 329--331.
[20] C. Markett, Triple sums and the Riemann zeta function, J. Number Theory 48 (1994), no. 2, 113--132.
[21] N. Nielsen, Die Gammafunktion, Chelsea, New York, 1965.
[22] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), no. 1, 39--43.
[23] Y. L. Ong, M. Eie and W.-C. Liaw, Explicit evaluations of triple Euler sums, Int. J. Number Theory, to appear.
[24] R. Sitaramacchandra Rao and M. V. Subbarao,
Transformation formulae for multiple series, Pacific J. Math. 113 (1984), 471--479.
[25] R. Sitaramacchandra Rao, A formula of S. Ramanujan, J. Number Theory 25 (1) (1987), 1--19.
[26] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, Cambridge, 1927. Reprinted 1996.
[27] F. Y. Yang, Bernoulli identities and application to Euler sums, PhD dissertation, National Chung Cheng
University, Minhsiung, Chiayi, Taiwan (2004).
[28] D. Zagier, Values of zeta functions and their application, First European Congress of Mathematics,
Vol. II (Pairs, 1992), Progr. Math., vol. 120, Birkhauser, Basel, 1994, 497--512.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top