(3.238.186.43) 您好!臺灣時間:2021/02/28 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃智偉
研究生(外文):Jih Wei Huang
論文名稱:雙配向層結構對於預傾角的影響
論文名稱(外文):Study of pretilt angle controlled with new dual alignment structure
指導教授:吳國梅
指導教授(外文):Gwo Mei Wu
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:預傾角應答速度
外文關鍵詞:No-Bias-BendOptically Compensated Bend
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
許多研究證實只要提高預傾角,即可改善應答速度,而所謂的高預傾角範圍在10度到80度,在水平配向膜上一般的配向處理如摩擦配向所產生的預傾角約30~50,若是特殊的高預傾角PI材料也頂多只有70~80的傾斜,而在垂直配向膜上做配向處理產生的預傾角效果也只到850~880之間,所以能使預傾角在這些角度範圍以外都屬於高預傾角。而本實驗利用一種新的製程提高預傾角,進而控制預傾角,製程為雙層配向結構,上層為高分子液晶聚合物下層為PI(Polymide)配向材料,此雙層配向結構對於液晶分子作用力方向軸的不同以及作用力大小的不同,影響液晶分子而提高了預傾角;而注入不同類型的液晶發現此雙層配向結構對於液晶分子的預傾角變化也有所不同。在本實驗中改變上層高分子液晶聚合物的製程濃度,配合下層水平PI,做出的預傾角範圍可以從10度做到88度左右。而本來光學補償彎曲(Optically Compensated Bend;簡稱OCB)模式應答速度和暖機時間的缺點,經由No-Bias-Bend(NBB)模式所改善,此模式證實只要有效提高預傾角,可改善應答速度,所以本實驗有效的提高預傾角,進而控制預傾角,提供了一個改善應答速度以及省電的液晶顯示器製程。
It is testified that response can be speeded up if only promotes the pre-tilt angle, and the called high pre-tilt angle is between 10ºand 80º, the alignment on level alignment film, such as friction alignment, produce pre-tilt angle about 3°~5°, even the special high pre-tilt angle PI is at most inclined by 7°~8°, and the pre-tilt angle produced when aligned on vertical alignment film is only 85°~88°, so, pre-tilt angles beyond these angles become high pre-tilt angle. This experiment uses one new process to promote pre-tilt angle and to control pre-tilt angle, the process is of double layer alignment structure, wherein the upper layer is liquid crystal conglomerate (LCC), the lower layer is PI aligning material, the difference of axial direction and volume of function force of said double layer alignment structure on liquid crystal molecule shall influence liquid crystal molecule and promote the pre-tilt angle; it is found by injecting different types of liquid crystal that the pre-tilt angles of said double layer alignment structure on liquid crystal are different. This experiment is to change concentration of LCP of the upper layer; the pre-tilt angle can be regulated from 10º to 88º basing on the level PI of the lower layer. No-Bias-Bend (NBB) model can improve the disadvantage in response speed and warming-up time, this model testifies that the response speed can be improved if only promotes the pre-tilt angle effectively, thus, this experiment can effectively promote and control the pre-tilt angle, therefore, a LCD process to improve the response speed and save electricity.
目錄
誌謝
摘要
英文摘要
目錄
表目錄
圖目錄
第一章 緒論-----------------------------------------------1
第二章 液晶簡介-------------------------------------------4
2.1 認識液晶-------------------------------------------4
2.2 液晶相的分類---------------------------------------5
2.2.1 依液晶分子的形成方法--------------------------6
2.2.2 依液晶分子的排列狀態--------------------------7
2.2.3 依液晶分子量的大小---------------------------11
2.3 液晶的物理及光學特性------------------------------12
2.3.1 折射率異方向與光學異向性---------------------13
2.3.2 液晶的彈性連續體理論-------------------------14
2.3.3 介電異向性-----------------------------------14
2.3.4 分子排列的秩序參數---------------------------15
2.3.5 液晶顯示器顯示原理---------------------------16
2.3.6 液晶配向-------------------------------------17
2.3.7 配向的方法-----------------------------------20
2.6.8 顯示器的發展與目前瓶頸-----------------------28
第三章 文獻回顧與實驗動機--------------------------------31
3.1 OCB液晶模式---------------------------------------31
3.2 No-Bias-Bend液晶模式------------------------------33
3.3 控制預傾角-混合PI---------------------------------35
3.4 控制預傾角-雙層配向膜-----------------------------38
3.5 有效降低臨界電壓----------------------------------40
3.6 實驗動機與原理------------------------------------41
第四章 實驗方法------------------------------------------44
4.1 實驗架構------------------------------------------44
4.2 實驗流程------------------------------------------46
4.2.1 鍍上PI配向膜--------------------------------46
4.2.2 摩擦配向-------------------------------------47
4.2.3 調製高分子液晶聚合物濃度---------------------49
4.2.4 高分子液晶聚合物鍍膜-------------------------49
4.2.5 樣品Cell製作--------------------------------50
4.2.6 量測預傾角-----------------------------------50
第五章 實驗結果與討論------------------------------------53
5.1 不同PI配向膜對於預傾角的影響---------------------53
5.2 改變濃度及注入不同類型液晶------------------------58
5.2.1 注入正型OCB液晶-----------------------------58
5.2.2 注入負型液晶---------------------------------61
5.3 實驗結果討論--------------------------------------63
第六章 結論----------------------------------------------66
參考文獻-------------------------------------------------68
[1] P. J. Bos and J. A. Rahman”, An optically' self-compensating'electro-optical effect with wide angle of view “, 1993 SID Int. Symp. Dig. Tech. Papers, P.273.
[2]Y.Yamaguchi,T.Miyashita and T.Uchida,”Wide-viewing-angle display mode for the active-matrix LCD Using bend-alignment liquid-crystal cell” 1993 SID Int. Symp.Dig. Tech. Papers, P.277.
[3] T. Miyashita and T. Uchida, ” Optically Compensated Bend Mode (OCB Mode) with Wide Viewing Angle and Fast Response” IEICE Trans. Electron Vol.E79-C.No.8 pp.1076-1082,1996.
[4] P. J. Bos, P. A. Johnson and K. R. Koehler Beran” The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device”, 1983 SID Int. Symp. Dig. Tech. Papers, P.30.
[5] N. Koma, T. Miyashita, T. Uchida, N. Mitani“A novel method for high speed transition from splay to bend alignment in the OCB-mode LCD with fast response”, 2000 SID Int. Symp. Dig. Tech. Papers, P.632.
[6] K. Sekiya et al., IDW2004, P.97.
[7]T. Miyashita, Y. Yamaguchi and T. Uchida” Wide-Viewing-Angle Display Mode Using Bend-Alignment Liquid Crystal Cell, Jpn. J. Appl. Phys. Vol.34 (1995) pp.L177.
[8] C. L Kuo, T. Miyashita, M. Suzuki and T. Uchida” Crucial influences of K33/K11 ratio on viewing angle of display mode using a bend-alignment liquid-crystal cell with a compensator”, Appl. Phys. Lett. 68 (1996) p1461.
[9] F.S.Y. Yeung, Y.W.Li and H.S.Kwok,”Fast response no bias bend LCD ”IDW/AD, P41, 2005.
[10] F. Reinitzer, Monatshefte fur chemie.9, 421 (1888).
[11] O. Iehmann, Z. physic Chem. 4, p.462 (1989).
[12] 非接觸式電漿配向技術於軟性液晶顯示器之應用,周維揚.何正達,民國九十五年六月二十一日.
[13] M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinovl Switzerl,” Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers “, Jap. J. Appl. Phys. 31, p2155(1992)

[14] Ying Zhou and Susumu Sato,” Electrooptical and Response/Relaxation Properties of Liquid Crystal Cells in In-plane Switching Mode with Polyvinylcinnamate Photoinduced Alignment Layer”, Jap. J. Appl. Phys. 37, p4439(1998)
[15] K. Ohmuro, S. Kataoka, T. Sasaki and Y,Koike,” Method for the manufacture of a liquid crystal ” SID 1997 Digest, p845(1997)
[16] A. Tadada, S. Kataoka, T. Sasaki, H. Chida. Chida. H. Tsuda, K. Ohmuro, Y.Koike, T. Sasbayashi, and K. Okamoto,” A Super-High Image Quality Multi-Domain Vertical Alignment LCD by New Rubbing-Less Technology” SID 1998 Digest,41 p1077(1998)
[17] 摻高分子聚合物OCB模態液晶顯示元件之研究,許書豪,陳殿榮 ,吳俊傑,民國九十四年六月
[18] F. Sze-Yan Yeung, F.-C. Xie, H.-S. Kwok, J. Wan, O. Tsui, and P. Sheng,SID 05 DIGEST.
[19] Jong Bok Kim, Kyung Chan Kim, Han Jin Ahn,” No bias pi cell using a dual alignment layer with an intermediate pretilt angle”APPLIED PHYSICS LETTERS 91, p023507 (2007).
[20] Wei-Qing Wu, Yi-Fan Chen, Szu-Fen Chen, Huang-Ming Philip Chen,” Critical Voltage Reduction by Alignment Layer Modification in Pi-Cells”,p692 IDMC 2007.
[21] 張繼鴻, 發展一可用電壓調控焦距的液晶元件, 民國九十二年六月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔