(3.235.191.87) 您好!臺灣時間:2021/05/13 14:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:譚祖德
研究生(外文):T. T. Tan
論文名稱:奈米粉體對環氧樹脂奈米複合材料性質之影響
論文名稱(外文):The Effect of Nano-particles on the Properties of Epoxy/Nanocomposites
指導教授:楊禎明
指導教授(外文):J. M. Yang
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:116
中文關鍵詞:環氧樹脂奈米複合材料田口方法
外文關鍵詞:EpoxyNanocompositesCarbon BlackNano-TiO2Nano-SiO2Nano-Al2O3MontanorilloniteTaguchi methods
相關次數:
  • 被引用被引用:0
  • 點閱點閱:657
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用環氧樹脂與各種奈米粉體,包括碳黑(Carbon Black)、奈米級二氧化鈦(Nano-TiO2)、奈米級二氧化矽(Nano-SiO2)、奈米級三氧化二鋁(Nano-Al2O3)、蒙脫土(Montmorillonite),加以製備出環氧樹脂/奈米複合材料,並利用示差掃描熱卡計(DSC)分析玻璃轉化溫度Tg、最高反應溫度Tp及轉化率間之關係,同時以掃描式電子顯微鏡(SEM)觀察及分析其相型態。
經由SEM分析顯示,由於奈米粉體之聚集作用,其在環氧樹脂中之大小均遠大於其本身之粒徑,其中以Carbon Black及Montmorillonite之分散為最差。
經由DSC分析顯示,由於奈米粉體與環氧樹脂間介面面積之增加、材料分子量及延展性發生變化、奈米粉體之穿透效應降低環氧樹脂之交聯密度及奈米粉體吸濕效應之影響,在大部分之情形下將使Tg呈現降低之現象,同時奈米粉體的加入會使得Tp升高並使轉化率曲線向高溫區偏移。
利用田口方法所得到之實驗結果顯示,在適當的參數條件組合下,加入奈米粉體可以避免Tg大幅降低之效應;另一方面亦可以藉以找出造成Tp降低,並使轉化率曲線向低溫區偏移之參數組合。
A series of Nano-particles included Carbon Black、Nano-TiO2、Nano-SiO2、Nano-Al2O3、Montmorillonite have been used to added into the Epoxy and for preparation of Epoxy/Nanocomposites. Differential Scanning Calorimetry(DSC)has been used to analyzed the Glass- Transition Temperature(Tg)and conversion of Epoxy/Nanocomposites. Scanning Electron Microscope(SEM)has been used to observed the dispersion of the Nano-particles. Observed from the SEM can found that Carbon Black and Montmorillonite dispersed the worst since easily agglutinates . Analysis of DSC data indicated the presence of the Nano-particles, the Epoxy/Nanocomposites show a Tg depression and Tp increased, moreover, conversion curve shift to higher-temperature when Tp increased. Taguchi methods also been used to study and find to result in the optimal process parameters of the Epoxy/Nanocomposites then not signification decreased of Tg , and find the factors and level will influent the maximum reaction temperature(Tp)
目錄
指導教授推薦書
口試委員會審定書
長庚大學授權書………………………………………………………………….. Ⅲ
誌謝………………………………………………………………………………. Ⅳ
中文摘要…………………………………………………………………………. Ⅴ
英文摘要…………………………………………………………………………. Ⅵ
圖目錄……………………………………………………………………………. Ⅹ
表目錄……………………………………………………………………………. XII
第一章 緒論……………………………………………………………………... 1
1-1 環氧樹脂……………………………………………………………………. 1
1-2 奈米粉體……………………………………………………………………. 2
1-3 研究重點與內容……………………………………………………………. 4
第二章 文獻回顧………………………………………………………………… 10
2-1 聚合反應之研究……………………………………………………………. 10
2-2 環氧樹脂/奈米複合材料發展…………………………………………..…. 13
2-3 環氧樹脂/奈米複合材料硬化狀態及結構研究………………………...…. 16
2-4 田口方法……………………………………………………………………. 19
第三章 實驗原理及實驗方法…………………………………………………… 20
3-1 實驗原理……………………………………………………………………. 20
3-1-1 環氧樹脂及環氧樹脂/奈米複合材料反應原理………………………… 20
3-1-2田口方法之原理與應用………………………………………………….. 22
3-1-3 各種奈米粉體之性質…………………………………………………….. 25
3-1-3-1 碳黑(Carbon Black)……………………………………………….. 25
3-1-3-2 奈米級二氧化鈦(Nano-TiO2)…………………………..………….. 28
3-1-3-3奈米級二氧化矽(Nano-SiO2)…………………………..…………… 31
3-1-3-4奈米級三氧化二鋁(Nano-Al2O3)…………………………..……….. 34
3-1-3-5 蒙脫土(Montmorillonite)…………………………..……………. 37
3-2 實驗藥品與材料……………………………………………………………. 40
3-3 實驗儀器與設備……………………………………………………………. 44
3-4 實驗步驟……………………………………………………………………. 45
3-4-1 環氧樹脂/奈米複合材料之製備………………………………………… 45
3-4-1-1 Varnish配方……………………………………………………………. 45
3-4-1-2樣品製備…………………………………………..…………………… 46
3-4-2 測試樣品之物性分析……………………………………………………. 47
3-4-2-1示差掃描熱卡計之測試……………………………………………….. 47
3-4-2-2掃描式電子顯微鏡之分析…………………………………………….. 48
第四章 結果與討論……………………………………………………………… 49
4-1環氧樹脂/奈米複合材料中奈米粉體粒子之分散狀況分析……………… 49
4-2 玻璃轉化溫度Tg、最高反應溫度Tp及轉化率之分析……………………. 50
4-3奈米粉體添加量與最高反應溫度Tp、轉化率、玻璃轉化溫度Tg之關係… 52
4-4 運用田口方法探討環氧樹脂/奈米複合材料之Tg及Tp………………….. 54
第五章 結論……………………………………………………………………… 96
參考文獻…………………………………………………………………………. 97


圖目錄
Figure 1-1. Structure of Brominated Difunctional Epoxy Resin…………………. 8
Figure 4-1. Particle size of Carbon Black(A)and distributed in epoxy:2.5phr(B)、10phr(C)…………………………………………...……… 56
Figure 4-2. Particle size of TiO2(A)and distributed in epoxy:2.5phr(B)、10phr(C)…………………………………………...…………………….. 57
Figure 4-3. Particle size of SiO2(A)and distributed in epoxy:2.5phr(B)、10phr(C)…………………………………………...…………………….. 58
Figure 4-4. Particle size of Al2O3(A)and distributed in epoxy:2.5phr(B)、10phr(C)…………………………………………...……………… 59
Figure 4-5. Particle size of Montmorillonite(A)and distributed in epoxy:2.5phr(B)、10phr(C)…………………………………………...……… 60
Figure 4-6. The conversion of epoxy with different Carbon black contents:●. 2.5phr;□. 5phr;■. 7.5phr;△. 10phr;○. blank………………. 63
Figure 4-7. The conversion of epoxy with different TiO2 contents:●. 2.5phr;□. 5phr;■. 7.5phr;△. 10phr;○. blank……………………………. 65
Figure 4-8.The conversion of epoxy with different SiO2 contents:●. 2.5phr;□. 5phr;■. 7.5phr;△. 10phr;○. blank……………………………. 67
Figure 4-9.The conversion of epoxy with different Al2O3 contents:●. 2.5phr;□. 5phr;■. 7.5phr;△. 10phr;○. blank………………………… 69
Figure 4-10.The conversion of epoxy with different Montmorollite contents:●. 2.5phr;□. 5phr;■. 7.5phr;△. 10phr;○. blank………………. 71
Figure 4-11.The conversion of epoxy with different nano-filler at 2.5phr:○, blank ; □, Carbon black ; △, TiO2 ; ●, SiO2 ; ■, Al2O3 ; ▲, Montmorillonite………………………………………………………. 73
Figure 4-12. The conversion of epoxy with different nano-filler at 5phr:○, blank ; □, Carbon black ; △, TiO2 ; ●, SiO2 ; ■, Al2O3 ; ▲, Montmorillonit………………………………………………………… 75
Figure 4-13. The conversion of epoxy with different nano-filler at 7.5phr:○, blank ; □, Carbon black ; △, TiO2 ; ●, SiO2 ; ■, Al2O3 ; ▲, Montmorillonite………………………………………………………. 77
Figure 4-14. The conversion of epoxy with different nano-filler at 10phr:○, blank ; □, Carbon black ; △, TiO2 ; ●, SiO2 ; ■, Al2O3 ; ▲, Montmorillonite………………………………………………………. 79
Figure 4-15. Factor effect larger-the-better on S/N ratio………………………….. 85
Figure 4-16. Tg of L18 confirmation experiment…………………………………. 87
Figure 4-17. Factor effect on smaller-the-better S/N ratio………………………... 78
Figure 4-18. Heat flow of L9 confirmation experiment…………………………... 94
Figure 4-19. The conversion of L9 confirmation experiment:■. L9-CH1;□. L9-CH2;○. blank…………………………………………………… 95

表目錄
Table 1-1. Application and property of nana-materials…………………………… 5
Table 1-2. Function of nanoparticles in Epoxy/nanocomposites for this study…… 6
Table 1-3. Application of nanocomposites………………………………………... 7
Table 3-1.Compositions of Varnish……………………………………………….. 45
Table 4-1. Particle size of filler content from 2.5 to10 phr……………………….. 61
Table 4-2. The effect of Carbon Black content on △H,Ti,Tp,Tf,△T,Tg…………. 62
Table 4-3. The effect of TiO2 content on △H,Ti,Tp,Tf,△T,Tg…………………… 64
Table 4-4. The effect of SiO2 content on△H,Ti,Tp,Tf,△T,Tg…………………….. 66
Table 4-5. The effect of Al2O3 content on △H,Ti,Tp,Tf,△T,Tg………………… 68
Table 4-6. The effect of Montmorillonite content on △H,Ti,Tp,Tf,△T,Tg………. 70
Table 4-7. The effect of filler content at 2.5phr on △H,Ti,Tp,Tf,△T,Tg……….. 72
Table 4-8. The effect of filler content at 5phr on △H,Ti,Tp,Tf,△T,Tg…………. 74
Table 4-9. The effect of filler content at 7.5phr on △H,Ti,Tp,Tf,△T,Tg……….. 76
Table 4-10. The effect of filler content at 10phr on △H,Ti,Tp,Tf,△T,Tg………. 78
Table 4-11. The effect of filler with different content on Tg……………………... 80
Table 4-12. Factors and levels selected of L18 experiment………………………. 81
Table 4-13. The orthogonal array of L18 experiment…………………………….. 82
Table 4-14. Analysis using larger-the-better response…………………………….. 83
Table 4-15. The main effects on larger-the-better S/N ratio………………………. 84
Table 4-16. The parameters and results of L18 confirmation experiment………… 86
Table 4-17. Factors and levels selected of L9 experiment………………………… 88
Table 4-18. The orthogonal array of L9 experiment………………………………. 89
Table 4-19. Analysis using smaller-the-better response………………………….. 90
Table 4-20. The main effects on smaller-the-better S/N ratio…………………….. 91
Table 4-21. The parameters and results of L9 confirmation experiment………….. 93
1. Jen-Ming Yang, Hui-Min Li, Ming-Chien Yang, Chun-Hsiung Shih, “Characterization of Acrylic Bone Cement Using Dynamic Mechanical Analysis”, Journal of Biomedical Materials Research (Applied Biomaterials), Vol. 48, Issue 1, pp 52-60, 1999.
2. Kang Sick Seo, Dae Su Kim, “Curing Behavior and Structure of an Epoxy/Clay Nanocomposite System”, Polymer Engineering and Science, Vol. 46, Issue 9, pp 1318-1325, 2006.
3. M. Ivankovic, L. Incarnato, J. M. Kenny, L. Nicolais, “Curing Kinetics and Chemorheology of Epoxy/Anhydride System”, Journal of Applied Polymer Science, Vol. 90, Issue 11, pp 3012-3019, 2003.
4. Hongfong Xie, Binghua Liu, Zuanru Yuan, Jianyi Shen, Rongshi Cheng, “Cure Kinetics of Carbon Nanotube/Tetrafunctional Epoxy nanocomposites by Isothermal Differential Scanning Calorimetry”, Journal of Polymer Science Part B: Polymer Physics, Vol. 42, Issue 20, pp 3701-3712, 2004.
5. Wei-Bing Xu, Su-Ping Bao, Shi-Jun Shen, Guo-Pei Hang, Ping-Sheng He, ”Curing Kinetics of Epoxy Resin – Imidazole - Organic Montmorillonite nanocomposites Determined by Differential Scanning Calorimetry”, Journal of Applied Polymer Science, Vol. 88, Issue 13, pp 2932-2941, 2003.
6. Marica Ivankovic, Ivan Brnardic, Hrvoje Ivankovic, Helena Jasna Mencer, “DSC Study of the Cure Kinetics During Nanocomposite Formation, Epoxy/Poly(oxypropylene) Diamine/Organically Modified Montmorillonite System”, Journal of Applied Polymer Science, Vol. 99, Issue 2, pp 550-557, 2006.
7. Katherine Dean, Julia Krstina, Wendy Tian, Russell J. Varley, “Effect of Ultrasonic Dispersion Methods on Thermal and Mechanical Properties of OrganoClay Epoxy nanocomposites”, Macromolecular Materials and Engineering, Vol. 292, Issue 4, pp 415-427, 2007.
8. M.-T. Ton-That, T.-D. Ngo, P. Ding,G. Fang, K. C. Cole, and S. V. Hoa, “Epoxy nanocomposites: Analysis and Kinetics of Cure”, Polymer Engineering and Science, Vol. 44, Issue 6, pp 1132-1141, 2004.
9. Federica Bondioli, Valeria Cannillo, Elena Fabbri, Massimo Messori, “Epoxy-Silica nanocomposites: Preparation, Experimental Characterization, and Modeling”, Journal of Applied Polymer Science, Vol. 97, Issue 6, pp 2382-2386, 2005.
10. Alexander B. Morgan, “Flame retarded polymer layered silicate nanocomposites:a review of commercial and open literature systems”, Polymers for Advanced Technologies, Vol. 17, Issue 4, pp 206-217, 2006.
11. YangYang Sun, Zhquing Zhang, Kyoung-Sik Moon, C. P. Wong, “Glass Transition and Relaxation Behavior of Epoxy nanocomposites”, Journal of Polymer Science Part B: Polymer Physics, Vol. 42, Issue 21, pp 3849-3858, 2004
12. Hewen Liu, Carl-Eric Wilën, Wenfang Shi, “Glass-Tran sition Temperature as a Function of Conversion in Hyperbranched Polymers Obtained by Self-Condensing Vinyl Polymerization”, Macromolecular Theory and Simulations, Vol. 11, Issue 5 , pp 459-461, 2002
13. L. F. Yang, K. D. Yao, W. Koh ,“Kinetics Analysis of the Curing Reaction of Fast Cure Epoxy Prepregs”, Journal of Applied Polymer Science, Vol. 73, Issue 8, pp 1501-1508, 1999
14. Nehal A. Salahuddin, “Layered silicate/epoxy nanocomposites: synthesis, characterization and properties”, Polymers for Advanced Technologies, Vol. 15, Issue 5, pp 251-259, 2004
15. Jen-Ming Yang, Jing-Shen Shyu, Hsin-Lung Chen, “Polymerization of Acrylic Bone Cement Investigated by Differential Scanning Calorimetry: Effects of Heating Rate and TCP Content”, Polymer Engineering and Science, Vol. 37, Issue 7, pp 1182-1187, 1997
16. J-M Yang, “Polymerization of acrylic bone cement using differential scanning calorimetry”, Biomaterials, Vol. 18, No. 19, 1997
17. Chenggang Chen, David Curliss, “Preparation, Characterization, and Nanostructural Evolution of Epoxy nanocomposites”, Journal of Applied Polymer Science, Vol. 90, Issue 8, pp 2276-2287, 2003
18. Jung-Hyun Lee, Hyo-Chang Yoon, “Properties of Epoxy Molding Compound According to the Pretreatment Method of an Amino-Silane Coupling Agent on Epoxy or Phenol Resin”, Journal of Applied Polymer Science, Vol. 100, Issue 3, pp 2171-2179 ,2006
19. Steven Swier, Bruno Van Mele, “Reaction Thermodynamics of Amine-Cured Epoxy Systems: Validation of the Enthalpy and Heat Capacity of Reaction As Determined by Modulated Temperature Differential Scanning Calorimetry”, Journal of Polymer Science Part B: Polymer Physics, Vol. 41, Issue 6, pp 594 - 608, 2003
20. Jean Pascal Eloundou, Ohandja Ayina, Hippolyte Ntede Nga, Jean Franc Ois Gerard, Jean Pierre Pascault, Gisele Boiteux, Gerard Seytre, “Simultaneous Kinetic and Microdielectric Studies of Some Epoxy-Amine Systems”, Journal of Polymer Science Part B: Polymer Physics, Vol. 36, Issue 6, pp 2911-2921, 1998
21. Qian Wang, Birgit K. Storm, Lars P. Houmoller, “Study of the Isothermal Curing of an Epoxy Prepreg by Near-Infrared Spectroscopy”, J Journal of Applied Polymer Science, Vol. 87, Issue 14, pp 2295-2305, 2003
22. L. A. Utracki, M. Sepehr, E. Boccaleri , “Review: Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs)”, Polymers for Advanced Technologies, Vol. 18, Issue 1, pp 1-37, 2007
23. Walid Naous, Xiao-Yan Yu, Qing-Xin Zhang, Kimi Yoshi Naito, Yutaka Kagawa, “Morphology, Tensile Properties, and Fracture Toughness of Epoxy/Al2O3 nanocomposites”, Journal of Polymer Science Part B: Polymer Physics, Vol. 44, Issue 10, pp 1466-1473, 2006
24. Joonwon Bae, Jyongsik Jang, Seong-Ho Yoon, “Cure Behavior of Liquid-Crystalline Epoxy/Carbon Nanotube System and the Effect of Surface Treatment of Carbon Fillers on Cure Reaction”, Macromolecular Chemistry and Physics, Vol. 203, Issue 15, pp 2196-2204, 2002
25. M. Ghaemy, S. M. Amini Nasab, M. Barghamadi, “Nonisothermal Cure Kinetics of Diglycidylether of Bisphenol-A/Amine System Reinforced with Nanosilica Particles”, Journal of Applied Polymer Science, Vol. 104, Issue 6, pp 3855-3863, 2007
26. Cheng-Ho Chen, Chih-Chun Teng, Ming-Shyong Tsai, Fu-Su Yen, “Preparation and Characterization of Rigid Poly(vinyl chloride)/Montmorillonite nanocomposites. II. XRD, Morphological and Mechanical Characteristics”, Journal of Polymer Science Part B: Polymer Physics, Vol. 44, Issue 15, pp 2145-2154, 2006
27. C. Lekakou, I. Kontodimopoulos, A.K. Murugesh, Y.L. Chen, D.A. Jesson, J.F. Watts, P.A. Smith, “Processability Studies of Silica-Thermoset Polymer Matrix nanocomposites”, Polymer Engineering and Science, Vol. 48, Issue 2, pp 216-222, 2008
28. K.S. Huang, Y.H. Nien, J.S. Chen, T.R. Shieh, J.W. Chen, “Synthesis and Properties of Epoxy/TiO2 Composite Materials”, Polymer Composites, Vol. 27, Issue 2, pp 195-200, 2006
29. Q. M. Jia, M. Zheng, C. Z. Xu and H. X. Chen, “The mechanical properties and tribological behavior of epoxy resin composites modified by different shape nanofillers”, Polymers for Advanced Technologies, Vol. 17, Issue 3, pp 168-173, 2006
30. Rudolf Gensler, Peter Grˆppel, Volker Muhrer, Norbert Muller, “Application of Nanoparticles in Polymers for Electronics and Electrical Engineering”, Particle & Particle Systems Characterization, Vol. 19, Issue 5, pp 293-299, 2002
31. W.-F. A. Su, K. C. Chen, S. Y. Tseng, “Effects of chemical structure changes on thermal, mechanical, and crystalline properties of rigid rod epoxy resins”, Journal of Applied Polymer Science, Vol. 78, Issue 2, pp 446-451, 2000
32. X. Zhang, Q. Li, T. G. Holesinger, P. N. Arendt, J. Huang, P. D. Kirven, T. G. Clapp, R. F. DePaula, X. Liao, Y. Zhao, L. Zheng, D. E. Peterson, Y. Zhu, “Ultrastrong, Stiff, and Lightweight Carbon-Nanotube Fibers”, Advanced Materials, Vol. 19, Issue 23, pp 4198-4201, 2007
33. Yugang Sun, John A. Rogers, “Inorganic Semiconductors for Flexible Electronics”, Advanced Materials, Vol. 19, Issue 15 , pp 1897-1916, 2007
34. Martin Arvidsson, Ida Gremyr, “Principles of robust design methodology ”, Quality and Reliability Engineering International, Vol. 24 Issue 1 , pp1 - 123 , 2008
35. Lee-Ing Tong, Chao-Ton Su, “Optimizing multi-response problems in the Taguchi method dy fuzzy multiple attribute decision making”, Quality and Reliability Engineering International, Vol. 13, Issue 1, pp 25-34, 1997
36. Eyk Ng, WK Ng, J Huang, YK Tan, “The engineering analysis of bioheat and penile homodynamic relationships in the diagnosis of erectile dysfunction:part Ⅱ- model optimization using the ANOVA and Taguchi method”, International Journal of Impotence Research online publication, 13 December 2007
37. Lide, David R, “CRC handbook of chemistry and physics:a ready-reference book chemical and physical data”, Boca Raton, FL:CRC Press, 1994
38. A. Laachachi, M. Cochez, E. Leroy, P. Gaudon, M. Ferriol, J. M. Lopez Cuesta,” Effect of Al2O3 and TiO2 nanoparticles and APP on thermal stability and flame retardance of PMMA”, Polymers for Advanced Technologies,Vol. 17, Issue 4, pp 327-334, 2006
39. Nirmalya Ballav, Mukul Biswas,” Preparation and evaluation of a nanocomposite of polythiophene with Al2O3”, Polymer International, Volume 52, Issue 1, pp 179-184, 2003
40. Cheng Guan, Chang-Li Lü, Yi-Fei Liu, Bai Yang,” Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites”, Journal of Applied Polymer Science, Vol. 102, Issue 2, pp 1631-1636, 2006
41. Ruediger Schueler, Juergen Petermann, Karl Schulte, Hans-Peter Wentzel,” Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin”, Journal of Applied Polymer Science,Vo. 63, Issue 13, pp 1741-1746, 1997
42. 楊致仁, 簡易田口品質工程, 中國生產力中心, pp 8-18;81-88, 1997
43. 鍾松正, 高分子奈米複合材料, 工研院化工所, pp 48, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔