(3.235.191.87) 您好!臺灣時間:2021/05/14 21:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王聖智
研究生(外文):Sheng Chih Wang
論文名稱:錯合劑對於化學水浴法製備Ag-In-S三元系統光觸媒電極與其性質影響之研究
論文名稱(外文):The Effects of Complex Agents on the Growth and Physical Properties of Ag-In-S Ternary System Photocatalyst Electrodes Using Chemical Bath Deposition
指導教授:鄭光煒
指導教授(外文):K. W. Cheng
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:103
中文關鍵詞:光觸媒化學水浴法光電化學反應
外文關鍵詞:PhotocatalystChemical bath depositionPhotoelectrochemical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用化學水浴法,於銦錫氧化物(ITO)導電玻璃上製備Ag-In-S三元化合物導體薄膜,並探討錯合劑比例及反應溫度對於薄膜的晶型結構、光學性質及光電化學性質的影響。由XRD圖及EDAX可以得知,當反應溫度為50度C時,基材表面成長為Ag2S顆粒狀結構,形成不連續相沈積於ITO玻璃上;當反應溫度為65度C時,薄膜晶型為AgIn5S8結構;反應溫度80度C時,薄膜之繞射峰由AgIn5S8晶型,隨著錯合劑檸檬酸鈉比例增加,逐漸向高角度的β-In2S3相結構偏移,而形成AgIn8S13之結構。薄膜的直接能隙為1.70~1.97 eV,厚度為205~1047 nm,皆隨著檸檬酸鈉比例的增加而遞增。由Mott-Schottky測試及開環電壓測試可得到薄膜的平帶電位,介於-0.391~-0.098 V(vs. NHE)之間。光電化學反應中,電解質為K2SO3及Na2S,施加偏壓 +1.5 V(vs. Pt電極)時,可得到最高的光電流密為5.1 mA/cm2。經由化學水浴法製備之半導體薄膜皆具有良好的光敏化效果。
In this study, Ag-In-S ternary thin film form semiconductors were deposited on indium-tin-oxide coated glass substrates with various molar ratios of complex agents and deposition temperatures in reaction solutions using chemical bath deposition. The effects of complex agents and deposition temperatures on the structural, electric, and optical properties of the Ag-In-S ternary system semiconductor films were investigated. When reaction temperture set at 50oC, only Ag2S particles were deposited on ITO coated glasses substrate; when the temperature set at 65oC, the crystal phase of samples was AgIn5S8 phase; and with the temperature set at 80 oC, based on the increasing molar ratio of sodium citrate, the peak of samples shifted from AgIn5S8 to β-In2S3, which indicated that crystal phase of samples approached AgIn8S13. The thickness, direct energy band gaps of samples varied from 205~1047nm, 1.70~1.97eV, respectively depending on the molar ratios of complex agents in reaction solution. The flat band potentials of these samples lie in the range of -0.391~-0.098 V vs. normal hydrogen electrode (NHE). Maximum photocurrent density of samples reached to 5.1mA/cm2 at the external potentials +1.5V vs. a Pt electrode in contact with K2SO3 and Na2S aqueous electrolyte under illumination using a 300W Xe lamp system with the light intensity set at 100 mW/cm2.
目錄
致謝 IV
摘要 V
Abstract VI
目錄 VII
圖目錄 X
表目錄 XIV
第一章 緒論 1
第二章 文獻回顧 3
2.1 光觸媒水分解產氫原理 3
2.1.1 半導體能帶理論 4
2.1.2 光電化學機制進行水分解反應 5
2.1.3 光觸媒粉體水分解反應 7
2.1.4 犧牲試劑之工作原理 9
2.1.5 影響觸媒光電化學性質之因素 10
2.2 I-III-VI族三元化合物 11
2.2.1 I-III-VI族三元化合物半導體簡介 11
2.2.2 I-III-VI族化合物薄膜之製備現況 13
2.3 研究目的 18
第三章 實驗方法 25
3.1 實驗藥品 25
3.2 實驗儀器設備 26
3.2.1 薄膜製備 26
3.2.2 分析儀器 26
3.3 實驗流程 28
3.3.1 基材準備與清洗 28
3.3.2 薄膜成長 29
3.3.3 薄膜性質分析 30
第四章 結果與討論 34
4.1 晶型結構分析 34
4.2 表面型態分析 35
4.3 元素分析 36
4.4 膜厚分析 37
4.5 薄膜成長機制 37
4.6 光學性質分析 39
4.6.1 薄膜穿透率與反射率 39
4.6.2 直接能隙與間接能隙計算 40
4.7 光電化學性質 42
4.7.1 平帶電位量測 42
4.7.2 光電流密度量測 45
第五章 結論與未來展望 80
5.1 結論 80
5.2 未來展望 81
第六章 參考文獻 82

圖目錄
圖1. 固體材料之電子能帶結構圖 20
圖2. 由本多-藤嶋所開發之n型TiO2光電化學反應裝置 20
圖3. 半導體、電解質水溶液與金屬間能帶圖 21
圖4. 外加電場時半導體、電解質水溶液與金屬間能帶圖 21
圖5. 半導體光觸媒之光催化程序 22
圖6. 光觸媒能帶工程之三種研究方向 22
圖7. 常見的半導體光觸媒能帶結構 23
圖8. 犧牲試劑的作用原理 23
圖9. 化學水浴法裝置圖 31
圖10. 光電化學反應裝置 31
圖11. Ag-In-S光觸媒薄膜製作流程 32
圖12. Sample (a)於不同溫度下成長之XRD圖 49
圖13. Sample (b)於不同溫度下成長之XRD圖 49
圖14. Sample (c)於不同溫度下成長之XRD圖 50
圖15. Sample (d)於不同溫度下成長之XRD圖 50
圖16. Samples (a)~(d)於65oC成長之XRD圖 51
圖17. Samples (a)~(d)於80oC成長之XRD圖 51
圖18. Samples (a)~(d)於80oC成長之XRD圖(2θ:46~50) 52
圖19. Ag2S-In2S3系統相圖 53
圖20. Sample (a)於50oC成長之SEM圖(10K(X)) 54
圖21. Sample (a)於50oC成長之SEM圖(40K(X)) 54
圖22. Sample (a)於65oC成長之SEM圖(10K(X)) 55
圖23. Sample (a)於65oC成長之SEM圖(40K(X)) 55
圖24. Sample (a)於80oC成長之SEM圖(10K(X)) 56
圖25. Sample (a)於80oC成長之SEM圖(40K(X)) 56
圖26. Sample (b)於50oC成長之SEM圖(10K(X)) 57
圖27. Sample (b)於50oC成長之SEM圖(40K(X)) 57
圖28. Sample (b)於65oC成長之SEM圖(10K(X)) 58
圖29. Sample (b)於65oC成長之SEM圖(40K(X)) 58
圖30. Sample (b)於80oC成長之SEM圖(10K(X)) 59
圖31. Sample (b)於80oC成長之SEM圖(40K(X)) 59
圖32. Sample (c)於50oC成長之SEM圖(10K(X)) 60
圖33. Sample (c)於50oC成長之SEM圖(40K(X)) 60
圖34. Sample (c)於65oC成長之SEM圖(10K(X)) 61
圖35. Sample (c)於65oC成長之SEM圖(40K(X)) 61
圖36. Sample (c)於80oC成長之SEM圖(10K(X)) 62
圖37. Sample (c)於80oC成長之SEM圖(40K(X)) 62
圖38. Sample (d)於50oC成長之SEM圖(10K(X)) 63
圖39. Sample (d)於50oC成長之SEM圖(40K(X)) 63
圖40. Sample (d)於65oC成長之SEM圖(10K(X)) 64
圖41. Sample (d)於65oC成長之SEM圖(40K(X)) 64
圖42. Sample (d)於80oC成長之SEM圖(10K(X)) 65
圖43. Sample (d)於80oC成長之SEM圖(40K(X)) 65
圖44. 薄膜成長溫度50oC之表面元素分佈 66
圖45. 薄膜成長溫度65oC之表面元素分佈 67
圖46. 薄膜成長溫度80oC之表面元素分佈 68
圖47. 65oC成長之檸檬酸鈉的比例與In/Ag及S/Ag關係圖 69
圖48. 80oC成長之檸檬酸鈉的比例與In/Ag及S/Ag關係圖 69
圖49. 成長溫度65oC之薄膜穿透率及反射率 70
圖50. 成長溫度80oC之薄膜穿透率及反射率 70
圖51. 成長溫度65oC之半導體薄膜 對Eph圖 71
圖52. 成長溫度80oC之半導體薄膜 對Eph圖 71
圖53. 成長溫度65oC之半導體薄膜 對Eph圖 72
圖54. 成長溫度80oC之半導體薄膜 對Eph圖 72
圖55. 成長溫度65oC之半導體薄膜Mott-Schottky分析圖 73
圖56. 成長溫度80oC之半導體薄膜Mott-Schottky分析圖 73
圖57. 成長溫度65oC之半導體薄膜能帶位置 74
圖58. 成長溫度80oC之半導體薄膜能帶位置 74
圖59. 成長溫度65oC之半導體薄膜光電流密度量測 75
圖60. 成長溫度80oC之半導體薄膜光電流密度量測 75
圖61. 成長溫度65oC時檸檬酸鈉濃度對光暗電流差值影響趨勢 76
圖62. 成長溫度80oC時檸檬酸鈉濃度對光暗電流差值影響趨勢 76

表目錄
表1. 可見光光觸媒於犧牲試劑中,入射光波長λ>420 nm照射下之氫氣及氧氣產率 24
表2. 化學水浴法製備Ag-In-S半導體薄膜之實驗配方比例(溫度(T) = 50、65、80 oC) 33
表3. Samples (a)~(d)於不同成長溫度下之薄膜表面元素成分比例 77
表4. 利用化學水浴法於反應溫度65 oC時成長Ag-In-S半導體薄膜之物理性質 78
表5. 利用化學水浴法於反應溫度80 oC時成長Ag-In-S半導體薄膜之物理性質 79
[1] A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.
[2] D.William and Jr.Callister, Materials science and engineering an introduction, John Wiley & Sons, New York, 2003.
[3] A. Fujishima, T. N. Rao, and D. A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1-21.
[4] T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, International Journal of Hydrogen Energy, 27 (2002) 991-1022.
[5] A. Hagfeldt and M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chemical Reviews, 95 (1995) 49-68.
[6] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95 (1995) 69-96.
[7] A. Kudo, Photocatalyst materials for water splitting, Catalysis Surveys from Asia, 7 (2003) 31-38.
[8] H. Kato and A. Kudo, Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts, Catalysis Today, 78 (2003) 561-569.
[9] A. Kudo, H. Kato, and I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting, Chemistry Letters, 33 (2004) 1534-1539.
[10] T. Ishii, H. Kato, and A. Kudo, H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 163 (2004) 181-186.
[11] A.Kudo and M.Sekizawa, Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst, Chemical communications, (2000) 1371-1372.
[12] A. Kudo and M. Sekizawa, Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solid solution, Catalysis Letters, 58 (1999) 241-243.
[13] A. Kudo, K. Omori, and H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, Journal of American Chemical Society, 121 (1999) 11459-11467.
[14] Y. Hosogi, K. Tanabe, H. Kato, H. Kobayashi, and A. Kudo, Energy structure and photocatalytic activity of niobates and tantalates containing Sn(II) with a 5s2 electron configuration, Chemistry Letters, 33 (2004) 28-29.
[15] H. Kato, H. Kobayashi, and A. Kudo, Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure, Journal of Physical Chemistry B, 106 (2002) 12441-12447.
[16] I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures, Journal of American Chemical Society, 126 (2004) 13406-13413.
[17] K. Rajeshwar, Hydrogen generation at irradiated oxide semiconductor solution interfaces, Journal of Applied Electrochemistry, 37 (2007) 765-787.
[18] 藤嶋昭等著,圖解光觸媒,王政友譯,台北,世茂出版,2006。
[19] A. Kudo, Development of photocatalyst materials for water splitting, International Journal of Hydrogen Energy, 31 (2006) 197-202.
[20] R. Memming, Solar energy conversion by photoelectrochemical processes, Electrochimica Acta, 25 (1980) 77-88.
[21] J. M. Bolts, A. B. Bocarsly, M. C. Palazzotto, E. G. Walton, N. S. Lewis, and M. S. Wrighton, Chemically derivatized n-type silicon photoelectrodes. Stabilization to surface corrosion in aqueous electrolyte solutions and mediation of oxidation reactions by surface-attached electroactive ferrocene reagents, Journal of American Chemical Society, 101 (1979) 1378-1385.
[22] M.A.Contreras, K.Ramanathan, J.AbuShama, F.Hasoon, D.L.Young, B.Egaas, and R.Noufi, Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1-xGax)Se2 solar cells, Progress in photovoltaics, 13 (2005) 209-216.
[23] R. Noufi, R. Axton, C. Herrington, and S. K. Deb, Electronic properties versus composition of thin films of CuInSe2, Applied Physics Letters, 45 (1984) 668-670.
[24] J.S.Jang, P.H.Borse, J.S.Lee, S.H.Choi, and H.G.Kim, Indium induced band gap tailoring in AgGa1-xInxS2 chalcopyrite structure for visible light photocatalysis, The Journal of Chemical Physics, 128 (2008) 154717.
[25] D. Chen and J. Ye, Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst, Journal of Physics and Chemistry of Solids, 68 (2007) 2317-2320.
[26] R. N. Bhattacharya, D. Cahen, and G. Hodes, Electrodeposition of Cu-In-S layers and their photoelectrochemical characterization, Solar Energy Materials, 10 (1984) 41-45.
[27] Y. Ueno, Y. Hattori, M. Ito, T. Sugiura, and H. Minoura, Synthesis and photoelectrochemical characterization of (Ag2S)x(In2S3)1-x and AgInS2-ySey, Solar Energy Materials and Solar Cells, 26 (1992) 229-242.
[28] S. Cattarin and H. Tributsch, Light-sustained and frequency entrained photoelectrochemical oscillations generated with CuInS2 and CuInSe2 electrodes, Berichte der Bunsengesellschaft fuer Physikalische Chemie, 92 (1988) 1345-1350.
[29] B. Scrosati, L. Fornarini, G. Razzini, and L. P. Bicelli, Photoelectrochemical behavior of CuIn5S8, Journal of the Electrochemical Society, 132 (1985) 593-598.
[30] K. W. Cheng, C. M. Huang, G. T. Pan, P. C. Chen, T. C. Lee, and T. C. K. Yang, Physical properties of AgIn5S8 polycrystalline films fabricated by solution growth technique, Materials Chemistry and Physics, 108 (2008) 16-23.
[31] R. C. Valderrama, P. J. Sebastian, J. Pantoja Enriquez, and S. A. Gamboa, Photoelectrochemical characterization of CIGS thin films for hydrogen production, Solar Energy Materials and Solar Cells, 88 (2005) 145-155.
[32] Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, S. Seto, T. Kakeno, and K. Yoshino, Structural, electrical and optical properties of AgInS2 thin films grown by thermal evaporation method, Journal of Physics and Chemistry of Solids, 66 (2005) 1858-1861.
[33] L. Makhova and I. Konovalov, Alternative deposition methods of copper and silver indium ternary sulphides with spinel structure, Thin Solid Films, 515 (2007) 5938-5942.
[34] M. L. A. Aguilera, J. A. Hernandez, M. Ortega-Lopez, V. M. Sanchez Resendiz, and M. A. Gonzalez Trujillo, Some physical properties of chalcopyrite and orthorhombic AgInS2 thin films prepared by spray pyrolysis, Materials Science and Engineering B, 102 (2003) 380-384.
[35] S. Shirakata, T. Terasako, and T. Kariya, Properties of CuIn(SxSe1-x)2 polycrystalline thin films prepared by chemical spray pyrolysis, Journal of Physics and Chemistry of Solids, 66 (2005) 1970-1973.
[36] Y. B. He, A. Polity, H. R. Alves, I. Osterreicher, W. Kriegseis, D. Pfisterer, B. K. Meyer, and M. Hardt, Structural and optical characterization of RF reactively sputtered CuInS2 thin films, Thin Solid Films, 403-404 (2002) 62-65.
[37] Y. Yamamoto, T. Yamaguchi, T. Tanaka, N. Tanahashi, and A. Yoshida, Characterization of CuInS2 thin films prepared by sputtering from binary compounds, Solar Energy Materials and Solar Cells, 49 (1997) 399-405.
[38] S. H. Kang, Y. K. Kim, D. S. Choi, and Y. E. Sung, Characterization of electrodeposited CuInSe2 (CIS) film, Electrochimica Acta, 51 (2006) 4433-4438.
[39] A. A. I. Al-Bassam, Electrodeposition of CuInSe2 thin films and their characteristics, Physica B: Condensed Matter, 266 (1999) 192-197.
[40] H. M. Pathan and C. D. Lokhande, Chemical deposition and characterization of copper indium diselenide (CISe) thin films, Applied Surface Science, 245 (2005) 328-334.
[41] C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, K. Diesner, M. Muller, and H. Tributsch, Chemical bath deposition of indium sulphide thin films: preparation and characterization, Thin Solid Films, 340 (1999) 18-23.
[42] R. S. Mane and C. D. Lokhande, Chemical deposition method for metal chalcogenide thin films, Materials Chemistry and Physics, 65 (2000) 1-31.
[43] JCPDS No. 39-1058, Powder Diffraction File, Joint Committee on Powder Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[44] JCPDS No. 32-0456, Powder Diffraction File, Joint Committee on Powder Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[45] JCPDS No. 25-1329, Powder Diffraction File, Joint Committee on Powder Diffraction Standard, ASTM, Newtown Square, PA, USA, 2002.
[46] V. P. Sachanyuk, G. P. Gorgut, V. V. Atuchin, I. D. Olekseyuk, and O. V. Parasyuk, The Ag2S-In2S3-Si(Ge)S2 systems and crystal structure of quaternary sulfides Ag2In2Si(Ge)S6, Journal of Alloys and Compounds, 452 (2008) 348-358.
[47] B. Yahmadi, N. Kamoun, R. Bennaceur, M. Mnari, M. Dachraoui, and K. Abdelkrim, Structural analysis of indium sulphide thin films elaborated by chemical bath deposition, Thin Solid Films, 473 (2005) 201-207.
[48] L. H. Lin, C. C. Wu, and T. C. Lee, Growth of crystalline AgIn5S8 thin films on glass substrates from aqueous solutions, Crystal Growth & Design, 7 (2007) 2725-2732.
[49] C. V. Chrysikopoulos and P. Kruger, Chelated Indium activable tracers for geothermal reservoirs;U.S. Geothermal Program Report(SGP-TR-99), Stanford University, 1986.
[50] D. D. Perrin, Stability constants of metal-ion complexes, Part B:Organic ligands, Pergamon press, Oxford, 2 (1979) 464.
[51] H. Meherzi-Maghraoui, M. Dachraoui, S. Belgacem, K. D. Buhre, R. Kunst, P. Cowache, and D. Lincot, Structural, optical and transport properties of Ag2S films deposited chemically from aqueous solution, Thin Solid Films, 288 (1996) 217-223.
[52] J. C. Manifacier, M. De Murcia, J. P. Fillard, and E. Vicario, Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure, Thin Solid Films, 41 (1977) 127-135.
[53] J.I.Pankove, Optical Processes in Semiconductors, Prentice-Hall, Englewood Chiffs, NJ, 1971.
[54] R. Maity, U. N. Maiti, M. K. Mitra, and K. K. Chattopadhyay, Synthesis and optical characterization of polymer-capped nanocrystalline ZnS thin films by chemical process, Physica E: Low-dimensional Systems and Nanostructures, 33 (2006) 104-109.
[55] I. V. Bodnar and V. F. Gremenok, Structural and optical properties of AgIn5S8 films prepared by pulsed laser deposition, Thin Solid Films, 487 (2005) 31-34.
[56] B. Asenjo, A. M. Chaparro, M. T. Gutiqrrez, J. Herrero, and C. Maffiotte, Quartz crystal microbalance study of the growth of indium(III) sulphide films from a chemical solution, Electrochimica Acta, 49 (2004) 737-744.
[57] M. M. El-Nahass, B. A. Khalifa, H. S. Soliman, and M. A. M. Seyam, Crystal structure and optical absorption investigations on b-In2S3 thin films, Thin Solid Films, 515 (2006) 1796-1801.
[58] N. Naghavi, R. Henriquez, V. Laptev, and D. Lincot, Growth studies and characterisation of In2S3 thin films deposited by atomic layer deposition (ALD), Applied Surface Science, 222 (2004) 65-73.
[59] R. R. Sawant, K. Y. Rajpure, and C. H. Bhosale, Determination of CdIn2S4 semiconductor parameters by (photo)electrochemical technique, Physica B: Condensed Matter, 393 (2007) 249-254.
[60] A. F. Qasrawi and N. M. Gasanly, Crystal data, electrical resistivity, and Hall mobility of n-type AgIn5S8 single crystals, Crystal Research and Technology, 36 (2001) 457-464.
[61] M. A. M. Seyam, A. E. Bekheet, and A. Elfalaky, AC conductivity and dielectric properties of In2S3 films, The European Physical Journal Applied Physics, 16 (2001) 99-104.
[62] W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, and K. Domen, Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods, Journal of Physical Chemistry B, 107 (2003) 1798-1803.
[63] A.Kudo, I.Tsuji, and H.Kato, AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation, Chemical Communications, 8 (2002) 1958-1959.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊