跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 05:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳品仲
研究生(外文):Pin Jung Chen
論文名稱:多孔性不銹鋼基材之金屬化合物擴散阻礙層對水蒸氣重組反應製氫之分離效應影響
論文名稱(外文):The Effects of Intermetallic Diffusion Barrier Layers on Porous Stainless Substrates for the Hydrogen Separation from the Steam Reforming Process
指導教授:鄭光煒
指導教授(外文):Kong Wei Cheng
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:141
中文關鍵詞:氫氣分離擴散阻礙層鈀膜
外文關鍵詞:hydrogen separationdiffusion barrier layerspalladium membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於能源以及環境問題的產生,氫能在近年逐漸的受到重視。工業上氫氣可以由甲烷水蒸汽重組反應獲得,若利用鈀或鈀合金膜反應器,則可以將轉化率提高到90%。然而在操作溫度超過400℃,多孔性不銹鋼基材會與鈀金屬膜產生鈀-鐵合金,導致氫氣滲透通量的減少。其中一種解決辦法就是利用金屬化合物(Intermetallic),例如陶瓷或者是氧化鉻做為擴散阻礙層,用以阻擋基材與鈀膜的相互擴散。
本研究利用Pall以及Mott兩種多孔性不銹鋼基材(Porous Stainless Steel, PSS)基材,在500-800℃的空氣環境下鍛燒,研究基材的性質變化。Pall和Mott管的平均孔徑的大小會隨著鍛燒溫度的提高而縮小,由X光繞射光譜可以得知氧化層為氧化鉻。
鈀膜析鍍在具有氧化層的多孔性不銹鋼基材上,可以降低鈀的膜厚,使氫氣通量提高。在Pall基材上以750℃氧化後並析鍍鈀膜,其氫氣滲透量可以達到32m3/m2.h.atm0.5,選擇率為4300 (H2/N2)。在Mott基材以600℃氧化後析鍍鈀膜,其氫氣滲透量為21m3/m2.h.atm0.5,選擇率為1800 (H2/N2)。
以溫度500℃氫氣環境穩定度測試下,200小時後具氧化層之試樣可以使氫氣通量提高15-20%。本研究也發現,具有氧化層基材的鈀膜,氫氣通量在前10小時會有些微的提高,之後50小時以前會有大幅度的下降,50小時之後氫氣通量呈現較穩定的狀態。這是由於鈀的再結晶作用造成鈀晶粒的聚集,使得氫氣通量在一開始有些微的提高,隨著鈀-鐵的相互擴散才使得氫氣通量降在穩定的氫氣流動環境下,50小時之即後呈現穩定的狀態和氫氣通量。
The hydrogen energy has become an important energy resource due to the energy and environmental problems. Industrially hydrogen is produced by steam reforming of hydrocarbons such as methane. The methane conversion can be increased to 90% in a membrane reactor using Pd or Pd alloy composites. However, the Pd-Fe alloy created by the diffusion of pores stainless steel substrate components into a palladium membrane by operating temperature greater than 400℃ can reduce the permeability of hydrogen. One solution is to create intermetallic diffusion barrier such as ceramic substrate, which blocks the diffusion of substrate components into the Pd membrane.
In this study, oxidation ceramic layers as diffusion layer on Pall/Mott porous stainless steel (PSS) substrate were produced in tube furnace purged with air gas at temperatures from 500-800℃. With an increase in annealed temperature, the average pore diameters of Pall and Mott PSS substrates decreased. The X-ray diffraction patterns of the samples demonstrate the presence of chromium oxide in oxidation layers.
Then the Pd membranes were deposited on these PSS substrate with the intermetallic oxidation diffusion barriers. The effective Pd membrane thickness could decrease and also increase the hydrogen permeances. The maximum average hydrogen permeances and selectivity of Pall PSS substrates in this study are 31.8 m3/m2.h.atm0.5 and 4300 (H2/N2), while those of Mott PSS substrate are 21 m3/m2.h.atm0.5 and 1800 (H2/N2) in this study.
The Pd membranes had activity for hydrogen separation with temperature kept at 500°C over a period of 200 hours. Hydrogen flux improved about 15-20% after 200 hours operation using the substrates with the intermetallic oxidation diffusion barriers created at 600℃. The hydrogen flux of the samples with diffusion barrier layers prepared in this study improved in a period of 50 hours, and hydrogen flux of these samples became stable after 50 hours for the test of life time. The possible reason is the total effects of the recrtstallization texture of Pd membrane and the generation of Pd-Fe alloys layers, which made hydrogen flux of samples became stable after 50 hours for the test of lifetime.
目錄
致謝 I
摘要 II
英文摘要 IV
目錄 VI
圖目錄 IX
表目錄 XV
第一章 簡介 - 1 -
1.1 氫能與燃料電池 - 1 -
1.2 水蒸氣重組反應製氫 - 4 -
1.3 薄膜反應器 - 6 -
1.4 分離薄膜 - 8 -
第二章 文獻回顧與研究目的 - 20 -
2.1 各種基材之影響 - 20 -
2.2 薄膜析鍍方法 - 22 -
2.3 擴散阻礙層之製備 - 27 -
2.4 研究目的 - 30 -
第三章 實驗 - 33 -
3.1實驗儀器與藥品 - 33 -
3.1.1 實驗藥品與氣體 - 33 -
3.1.2 實驗儀器 - 34 -
3.2.1 前處理 - 36 -
3.2.2 鍛燒氧化層 - 37 -
3.2.3 活化與敏化 - 37 -
3.2.4 無電鍍 - 38 -
3.2.5 氫氣通量以及選擇率測試 - 40 -
3.2.6 材料性質測試 - 40 -
第四章 基材擴散阻礙層的特性討論 - 46 -
4.1 基材特性 - 46 -
4.2 氧化層裝置及實驗 - 47 -
4.3 氧化對於表面型態的影響 - 47 -
4.4 氧化層對於孔徑分佈的關係 - 48 -
4.5 氧化層對於原始氣體通量及重量的影響 - 51 -
4.6 氧化層表面元素及晶型分析 - 52 -
4.7 氫氣通量與長期測試 - 54 -
第五章 擴散阻礙層特性分析 - 74 -
5.1 析鍍鈀後經過氫氣測試後之表面型態分析 - 74 -
5.2 高溫氧化下對基材表面型態及析鍍的影響 - 75 -
5.3 選擇率影響分析 - 76 -
5.4 氧化層的元素分佈 - 79 -
5.5 鈀鐵擴散分佈 - 80 -
5.6 長時間測試對晶型的影響 - 82 -
5.7 長時間氫氣測試與擴散阻礙層 - 84 -
5.8 長期測試下對於鈀膜的影響 - 85 -
第六章 結論與未來展望 - 109 -
參考文獻 - 111 -

圖目錄
圖1. 蒸汽重組反應與薄膜反應系統程序。 - 16 -
圖2. 分離膜的種類。 - 16 -
圖3. 氫氣分離示意圖。 - 17 -
圖4. 各種金屬對於氫氣的通量。 - 17 -
圖5. 鈀/氫相圖。 - 18 -
圖6. 鈀合金對氫氣的通量之影響(在350℃ 2.2MPa)。 - 18 -
圖7. 陽極處理之氧化鋁基材的掃瞄式電子顯微鏡(SEM)側視圖。 - 31 -
圖8. Pall和Mott裸管圖。 - 41 -
圖9. 敏化以及活化程序圖。 - 41 -
圖10. Pall-PSS管實驗流程圖。 - 42 -
圖11. Mott-PSS管實驗流程圖。 - 43 -
圖12. 無電鍍時間與析鍍反應速率圖。 - 44 -
圖13. 氫氣通量與選擇率量測系統圖。 - 44 -
圖14. Pall-PSS裸管和Mott-PSS裸管在500℃的氫氣通量。 - 59 -
圖15. Pall-PSS和Mott-PSS兩種PSS裸管經過750℃氫氣環境下,鍛燒前後的氦氣通量圖。 - 59 -
圖16. 氣體流動示意圖,(a)氣體自然流動入孔洞,(b)氣體部分強制流動入孔洞。 - 60 -
圖17. 掃瞄式電子顯微鏡在不同氧化溫度下之Mott(1000倍)以及Pall(2000倍)的表面型態圖。 - 62 -
圖18. 孔徑量測裝置示意圖。 - 62 -
圖19. 孔徑量測情形之儀器照片。 - 62 -
圖20. Mott-PSS裸管(左邊)與Pall-PSS裸管(右邊),在500℃、600℃及750℃氧化溫度之後孔徑相對分佈圖。 - 63 -
圖21. 750℃氧化之後Pall-PSS裸管相對孔徑分佈圖(Fr=0 sccm)。.. - 64 -
圖22. 750℃氧化之後Pall-PSS裸管相對孔徑分佈圖(Fr=10 sccm)。 - 64 -
圖23. 750℃氧化之後Pall-PSS裸管相對孔徑分佈圖(Fr=30 sccm)。 - 65 -
圖24. 各種氧化溫度下製備氧化層對於氦氣通量之影響。 - 65 -
圖25. 各種氧化溫度下製備氧化層之樣品重量改變分析圖。 - 66 -
圖26. 不同氧化溫度下對於Mott-PSS裸管的XRD圖譜。 - 66 -
圖27. 不同氧化溫度下對於Pall-PSS裸管的XRD圖譜。 - 67 -
圖28. 不同氧化溫度下對於Mott-PSS之多功能XRD圖譜 - 67 -
圖29. 不同氧化溫度下對於Pall-PSS之多功能XRD圖譜。 - 68 -
圖30. 以氧化溫度600℃氧化後之Mott與Pall之多功能XRD圖譜。 - 68 -
圖31. Mott-PSS表面元素比例與氧化溫度之關係。 - 69 -
圖32. Pall-PSS之表面元素比例與氧化溫度之關係。 - 69 -
圖33. Pd/Mott-PSS在不同氧化溫度氧化後,析鍍上鈀後的氫氣通量、選擇率以及膜厚關係圖(在壓差8atm下,溫度500℃)。 - 70 -
圖34. Pd/Pall-PSS在不同氧化溫度氧化後,析鍍上鈀後的氫氣通量、選擇率以及膜厚關係圖(在壓差8atm下,溫度500℃)。 - 70 -
圖35. Pd/Mott-PSS在不同氧化溫度後,析鍍上鈀之氫氣通量。 - 71 -
圖36. Pd/Pall-PSS在不同氧化溫度後,析鍍上鈀之氫氣通量。 - 71 -
圖37. Pd/Mott-PSS與Pd/Pall-PSS,無氧化層以及以氧化溫度600℃氧化,析鍍上鈀後在500℃氫氣通量與時間影響圖。 - 72 -
圖38. Pd/Pall-PSS在600℃氧化後,在氫氣350℃與500℃下測試圖。 - 72 -
圖39. Mott-PSS管經過氧化、活化及析鍍鈀與氫氣鍛燒之掃瞄式電子顯微鏡圖。 - 89 -
圖40. Mott-PSS基材鍍上鈀後,經過氫氣測試350小時以能量散射光譜儀(EDS)元素分析。 - 89 -
圖41. Mott-PSS基材以操作溫度800℃製備氧化層,析鍍上鈀後的表面型態。 - 90 -
圖42. Mott-PSS基材以操作溫度800℃製備氧化層,析鍍鈀緻密後的表面型態。 - 90 -
圖43. Mott-PSS管在各種氧化溫度下,膜厚對於緻密曲線圖。 - 91 -
圖44. Pd/Mott-PSS以氮氣、甲烷以及氦氣的理想選擇率圖。 - 91 -
圖45. Pd/Mott-PSS操作溫度600℃製備氧化層後,壓力、溫度對於理想選擇率之影響。 - 92 -
圖46. Mott-PSS基材以600℃氧化後PSS表面元素分佈圖。 - 93 -
圖47. Mott-PSS基材以不同氧化溫度下PSS截面元素分佈圖。 - 94 -
圖48. Mott-PSS基材以600℃氧化後孔洞中的元素分佈圖。 - 95 -
圖49. Pd/Mott-PSS為經過氧化處理,析鍍緻密後截面元素分佈圖。. - 96 -
圖50. Pd/Mott-PSS高溫氧化析鍍緻密後,掃瞄式電子顯微鏡截面圖。 - 96 -
圖51. Pd/Mott-PSS無氧化層且未氫氣測試之元素線性分析。 - 97 -
圖52. Pd/Mott-PSS無氧化層且未氫氣測試,掃瞄式電子顯微鏡截面圖。 - 97 -
圖53. Pd/Mott-PSS無氧化層狀況下,氫氣測試50小時後之元素線性分析。 - 98 -
圖54. Pd/Mott-PSS無氧化層狀況下,氫氣50小時後之掃瞄式電子顯微鏡截面圖。 - 98 -
圖55. Pd/Mott-PSS無氧化層狀況下,氫氣測試350小時後之元素線性分析。 - 99 -
圖56. Pd/Mott-PSS無氧化層狀況下,氫氣350小時後之掃瞄式電子顯微鏡截面圖。 - 99 -
圖57. Pd/Mott-PSS以600℃氧化且未氫氣測試之元素線性分析。 …..- 100 -
圖58. Pd/Mott-PSS以600℃氧化且未氫氣測試,掃瞄式電子顯微鏡截面圖。 - 100 -
圖59. Pd/Mott-PSS以600℃氧化狀況下,氫氣測試50小時後之元素線性分析。 - 101 -
圖60. Pd/Mott-PSS以600℃氧化狀況下氫氣測試50小時之掃瞄式電子顯微鏡截面圖。 - 101 -
圖61. Pd/Mott-PSS以600℃氧化狀況下,氫氣測試380小時後之元素線性分析。 - 102 -
圖62. Pd/Mott-PSS以600℃氧化狀況下氫氣測試380小時之掃瞄式電子顯微鏡截面圖。鏡截面圖。 - 102 -
圖63. Pd/Mott-PSS不同氧化溫度之XRD圖譜。 - 103 -
圖64. Pd/Mott-PSS在不同氧化溫度,氫氣鍛燒10小時XRD圖譜。. - 103 -
圖65. Pd/Mott-PSS在不同氧化溫度,氫氣鍛燒20小時XRD圖譜。. - 104 -
圖66. Pd/Mott-PSS在不同氧化溫度,氫氣鍛燒50小時XRD圖譜。. - 104 -
圖67. Pd/Mott-PSS無氧化層,不同氫氣測試時間之XRD圖譜。 ……- 105 -
圖68. Pd/Mott-PSS以600℃氧化後,不同氫氣測試時間之XRD圖譜。 - 105 -
圖69. Pd/Mott-PSS 600℃氧化後,不同氫氣鍛燒時間XRD (39o-41o)圖譜。 - 106 -
圖70. Pd/Mott-PSS在前10小時的氫氣通量降低比例圖。 …- 106 -
圖71. 500℃之氫氣長期測試對鈀膜晶格影響示意圖。……. - 107 -

表目錄
表1. 常用氣體燃料之安全特性表。 - 19 -
表2. 金屬薄膜分離器2003-2015年目標表。 - 19 -
表3. 各種基材之特性比較表。 - 31 -
表4. 擴散阻礙層之文獻整理表。 - 32 -
表5. 前處理、活化及析鍍溶液配方表。 - 45 -
表6. 孔徑與膜厚的關係表。 - 73 -
表7. Pd/Mott-PSS於500℃下氫氣測試對鈀晶格常數的變化表。…… - 108 -
表8. Pd/Mott-PSS 以600℃製備氧化層,在500℃氫氣測試時間對鈀晶粒大小表。 - 108 -
1. 曲新生等, “產氫與儲氫技術”, 石化燃料重組製氫, (2007), 2-83.

2. 顏貽乙, ”微型燃料電池新選擇-RMFC”, 濟部能源局能源報導, (2006).

3. C.Ovesen, B. Clausen, B. Hammershqi, B. Steffensen, T. Askgaard, I. Chorkendorff, J. Nqrskov, P. Rasmussen, P. Stoltze, P. Taylor, “A microkinetic analysis of the water-gas shift reaction under Industrial conditions”, Journal of Catalysis, 158, (1996), 170-180.

4. J. R. Welty, C. E. Wicks, R. E. Wilson, “Gregory Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer” 4th Edition, (2000), 443-444.

5. P. P. Mardilovich, Y. She, Y. H. Ma, M. H. Rei, “Defect-free palladium membranes on porous stainless-steel support”, AIChE Journal, 44, 2, (1998), 310-322.

6. J. W. Phair and R. Donelson, “Developments and Design of Novel (Non-Palladium-Based) Metal Membranes for Hydrogen Separation”, Industrial & Engineering Chemistry Research, 45, (2006), 5657-5674.

7. R.A. Oriani, “The Physical and Metallurgical Aspects of Hydrogen in Metals”, in ICCF4, Fourth International Conference on Cold Fusion. (1993), Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.

8. G. Alefeld, J. Vöiki, “Topics in Applied Physics Volume 28: Hydrogen in Metals I, Basic Properties”, Springer-Verlag Berlin Heidelberg, New York, (1978)

9. R. E. Buxbaum,” Palladium-Coated Metal Membranes for Ultra High Purity Hydrogen and Future Applications”, REB Research & Consulting, (1996).
http://www.rebresearch.com/newsite/papers/membs/MetMems.html

10. 朱泰億, ”鈀及銀複合膜之製備特、性分析及其氫/氮選透性之研究” 國立成功大學化工系博士論文,(2002), 2.

11. T. Graham, “On the Absorption and Dialytic Separation of Gases by Colloid Septa”, Philosophical Transactions of the Royal Society of London, 156, (1866), 399-439.

12. D.J. Edlund, Final Report to the US DOE on Grant DE-FG03-91ER81229 Bend Research, (1995).

13. H. Bruning and A. Sieverts,” The palladium hydrogen system”, Zeitschrift für Physikalische Chemie, 163, (1933), 409-441.

14. R. M. Barrer, Diffusion in and trough Solids, Cambridge University Press, London, (1951).

15. 台北市燃料電池基金會,”燃料的來源-氫氣”燃料電池之介紹,(2001),http://idic.tier.org.tw/TFCF/default.htm

16. U.S. Department of Energy, Small Business Innovation Research Program and Small Business Technology Transfer Program FY 2005 Solicitations, Technical Topic Descriptions, 15. Materials Research, Office of Fossil Energy, (2005).
http://www.science.doe.gov/sbir/solicitations/fy%202005/15_FE3.htm

17. Hydrogen From Coal Program; Office of Fossil Energy, U.S. Department of Energy: Washington, DC, (2005).

18. A. L. Athayde, R. W. Baker, and P. Nguyen, “Metal Composite Membranes for Hydrogen Separation”, Journal of Membrane Science, 94, (1994), 299-311.

19. V. Jayaraman, and Y. S. Lin, “Synthesis and Hydrogen Permeation Properties of Ultrathin Palladium-Silver Alloy Membranes”, Journal of Membrane Science, 104, (1995), 251-262.

20. V. Jayaraman, Y. S. Lin, M. Pakala, and R. Y. Lin, “Fabrication of Ultrathin Metallic Membranes on Ceramic Supports by Sputter Deposition”, Journal of Membrane Science., 99, (1995), 89-100.

21. M. Konno, M. Shindo, S. Sugawara, and S. Saito, “A Composite Palladium and Porous Aluminum Oxide Membrane for Hydrogen Gas Separation”, Journal of Membrane Science, 37, (1988), 193-197.

22. I. P. Mardilovich, P. V. Kurman, A. N. Govyadinov, 1. P. Mardilovich, M. M. Ermilova, N. V. Orekhova, A. N. Krivoshanova, R. Paterson, and V. M. Gryaznov, “Gas Permeability of Anodized Alumina Membranes with a Palladium-Ruthenium Alloy Layer”, Russian Journal of Physical Chemistry, 70, 3, (1996), 514-517.

23. K. J. Bryden, and J. Y. Ying, “Nanostructured Palladium Membrane Synthesis by Magnetron Sputtering”, Materials science & engineering. A , Structural Materials, 204, (1995), 140-145.

24. V. M. Gryaznov, O. S. Serebryannikova, M. Y. Serov, M. M. Ermilova, A. N. Karavanov, A. P. Mischenko, and N. V Orekhova, “Preparation and Catalysis over Palladium Composite Membranes”, Applied Catalysis. A, General, 96, (1993), 15-23.

25. M. Volpe, R. Inguanta, S. Piazza, C. Sunseri, “Optimized bath for electroless deposition of palladium on amorphous alumina membranes”, Surface & Coatings Technology, 200, (2006), 5800-5806.

26. R. Inguanta, M. Amodeo, F. D’Agostino, M. Volpe, Salvatore Piazza, and C. Sunseri, “Preparation of Pd-Coated Anodic Alumina Membranes for Gas Separation Media”, Journal of The Electrochemical Society, 154, 3, (2007), 188-194.

27. S. Tosti,” Supported and laminated Pd-based metallicmembranes”, International Journal of Hydrogen Energy, 28, (2003), 1445-1454.

28. S. Tosti, A. Adrover, A. Basile, V. Camilli, G. Chiappetta and V. Violante,” Characterization of thin wall Pd–Ag rolled membranes”, International Journal Hydrogen Energy, 28, (2003), 105-112.

29. K. J. Bryden and J. Y. Ying,” Electrodeposition synthesis and hydrogen absorption properties of nanostructured palladium-iron alloys”, Nanostructured Materials 9, (1997), 485-488.

30. Z. Y. Li, H. Maeda , K. Kusakabe , S. Morooka, H. Anzal, S. Akiyama, “Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method”, Journal of Membrane Science, 78, (1993), 247-254.

31. N. M. Peachey, R. C. Snow, and R. C. Dye, “Composite Pdfla Metal Membranes for Hydrogen Separation”, Journal of Membrane Science, 111, (1996), 123-133.

32. M. Tsapatisi, G.R. Gavalas, G. Xomeritakis, Recent Advances in Gas Separation and Microporous and Ceramic Membranes, Kanellopous, N.K., Ed. Membrane Science and Technology Series, Elsevier, New York, 6, (2000), 397.

33. P. Atanasova, V. Bhaskaran, M. Hampden-Smith, “Oxidation resistance of copper alloy thin films formed by chemical vapor deposition,” MRS Spring Meeting, San Francisco, April, MRS Symp. Proc., 427, (1996), 201-206.

34. S. E. Nam, K. H. Lee ,” A study on the palladium/nickel composite membrane by vacuum electro deposition”, Journal of Membrane Science 170, (2000), 91-99.

35. M. Charbonnier, M. Romand, E. Harry, M. Alami, “Surface plasma functionalization of polycarbonate: Application to electroless nickel and copper plating”, Journal of Applied Electrochemistry, 31, (2001), 57-63.

36. M. Charbonnier, M. Alami, M. Romand, “Plasma treatment process for palladium chemisorption onto polymers before electroless deposition”, Journal of The Electrochemical Society, 143, 2, (1996), 472-475.

37. J. Shu, B.P.A. Grandjean, E. Ghali, S. Kaliaguine, “Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating”, Journal of Membrane Science, 77, (1993), 181-195.

38. Y. Huang, R. Dittmeyer, “Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion”, Journal of Membrane Science 282, (2006), 296-310.

39. S. Uemiya, Y. Kude, K. Sugino, N. Sato, T. Matsuda, E. Kikuchi,“A Palladium/Porous-Glass Composite Membrane for Hydrogen Separation ”, Chemistry Letters, (1988), 1687-1690.

40. S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda, E. Kikuchi, ” Hydrogen Permeable Palladium-Silver Alloy Membrane Supported on Porous Ceramics”, Journal of Membrane Science, 56, (1991), 315-325.

41. H. Ocken, B.G. Pound, D.H. Lister, ” Deposition and Characterization of Electroless Palladium on Austenitic Stainless Steel”, Thin Solid Films 171, (1989), 313-322.

42. S. N. Athavale, M.K. Totlani, “Electroless Plating of Palladium”, Metal Finishing 87, (1989), 23-27.

43. R. Govind, D. Atnoor, “Development of a Composite Palladium Membrane for Selective Hydrogen Separatioq at High Temperature”, Industrial & Engineering Chemistry Research, 30, (1991), 591.

44. J. P. Collins, J.D. Way, “Preparation and Characterization of a Composite Palladium-Ceramic Membrane”, Industrial & Engineering Chemistry Research, 32, (1993), 3006-3013.

45. Y. H. Ma, B. C. Akis, M. E. Ayturk, F. Guazzone, E. E. Engwall, and I. P. Mardilovich, “Characterization of Intermetallic Diffusion Barrier and Alloy Formation for Pd/Cu and Pd/Ag Porous Stainless Steel Composite Membranes”, Industrial & Engineering Chemistry Research, 43, (2004), 2936-2945.

46. Y. H. Ma, P. P. Mardilovich, Y. She,” Hydrogen gas-extraction module and method of fabrication”, U. S. Patent 6152987 (2000).

47. P. P. Mardilovich, Y. She, Y. H. Ma, M. H. Rei, “Stability of hydrogen flux through Pd/porous stainless steel composite membranes”, Proceedings of the 5th International Conference on Inorganic Membrene, 1, (1998), 246-250.

48. M. E. Ayturk, I. P. Mardilovich, E. E. Engwall, Y. H. Ma, “Synthesis of composite Pd-porous stainless steel (PSS) membraneswith a Pd/Ag intermetallic diffusion barrier”, Journal of Membrane Science, 285, (2006), 385-394.

49. D. Yepes, L. M. Cornaglia, S. Irusta, E. A. Lombardo, “Different oxides used as diffusion barriers in composite hydrogen permeable membranes”, Journal of Membrane Science, 274, (2006), 92-101.

50. I. P. Mardilovich, E. Engwall, Y. H. Ma, “Dependence of hydrogen flux on the pore size and plating surface topology of asymmetric Pd-porous stainless steel membranes”, Desalination 144, (2002) 85-89.

51. 張新福,林文雄,”高氫氣通量及高穩定性鈀合金膜之製程開發研究”,工業技術研究院分包學術機構研究計畫,2006,10-11.

52. JCPDS No. 33-0397, Powder Diffraction File, Joint Committee on Powder Diffraction Standards, Newton Square, PA, USA, (2002).

53. JCPDS No. 72-0528, Powder Diffraction File, Joint Committee on Powder Diffraction Standards, Newton Square, PA, USA, (2002).

54. JCPDS No. 78-0722, Powder Diffraction File, Joint Committee on Powder Diffraction Standards, Newton Square, PA, USA, (2002).

55. F. Guazzone, M. E. Ayturk, Y. H. Ma, 21st Annual International Pittsburgh Coal Conference Proceedings, Japan, (2004).

56. AZoM™ - The A to Z of Materials and AZojomo - The "AZo Journal of Materials Online", AZoM™.com Pty.Ltd Copyright, (2008).
http://www.azom.com/details.asp?ArticleID=2382

57. H. Gao, J. Y. S. Lin, Y. Li, B. Zhang, “ Electroless plating synthesis, characterization and permeation properties of Pd-Cu membranes supported on ZrO2 modified porous stainless steel“, Journal of Membrane Science 265, (2005), 142-152.

58. B.C. Akis, “Preparation of Pd-Ag/PSS Composite Membranes for Hydrogen Separation”, Degree of Master of Science In Chemical Engineering, Worcester Polytechnic Institute, USA, (2004), 64.

59. S. Kjelstrup, D. Bedeaux, I. Inzoli and J. M. Simon, ”Criteria for validity of thermodynamic equations from non-equilibrium molecular dynamics simulations”, Energy, 33, (2008), 1185-1196.

60. E. Kikuchi, “Membrane reactor application to hydrogen production”, Catalysis Today, 56, (2000), 97-101.

61. JCPDS No. 46-1042, Powder Diffraction File, Joint Committee on Powder Diffraction Standards, Newton Square, PA, USA, (2002).

62. JCPDS No. 87-6041, Powder Diffraction File, Joint Committee on Powder Diffraction Standards, Newton Square, PA, USA, (2002).

63. Yandong Qu, Xiaojie Li, Ruiyong Li, Honghao Yan, Xin Ouyang, Xiaohong Wang, “Preparation and characterization of the TiO2 ultrafine particles by detonation method”, Materials Research Bulletin, 43, (2008), 97-103.

64. F. Guazzone and Y. H. Ma, ” Leak Growth Mechanism in Composite Pd Membranes Prepared by the Electroless Deposition Method”, AIChE Journal, 54, 2, (2008), 487-494.

65. A. Kulprathipanja, G. O. Alptekin, J. L. Falconer, J. D. Way, “Pd and Pd–Cu membranes: inhibition of H2 permeation by H2S”, Journal of Membrane Science, 254. (2005), 49-62.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top