(3.238.235.155) 您好!臺灣時間:2021/05/16 08:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林永杰
研究生(外文):Yung Chieh Lin
論文名稱:旋轉填充床應用於合成氫氧化鋅與氧化鋅奈米粉體
論文名稱(外文):Synthesis of Zinc Hydroxide and Oxide Nanoparticles in a Rotating Packed Bed
指導教授:林佳璋林佳璋引用關係
指導教授(外文):C. C. Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:112
中文關鍵詞:旋轉填充床氫氧化鋅氧化鋅奈米粉體
外文關鍵詞:Rotating Packed BedZinc HydroxideZinc OxideNanoparticles
相關次數:
  • 被引用被引用:12
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
文獻中奈米氧化鋅粉體的製備法,以反應沉澱法、機械化學法、溶膠凝膠法、水熱法等技術最為常見。其中,反應沉澱法具有操作簡便、低成本且易於放大等優勢。
本研究以超重力反應沉澱強化傳統反應沉澱法增加產能。反應物為氯化鋅和氫氧化鈉,以旋轉填充床合成氫氧化鋅,再經由煅燒生成奈米氧化鋅。探討影響奈米氧化鋅粉體粒徑之因素:轉速、反應物濃度、反應物計量比、反應液流量和煅燒溫度。
研究結果指出,當系統轉速1980 rpm,氯化鋅濃度為0.8 M,氫氧化鈉濃度為1.6 M,兩反應液流量皆為500 ml/min,最後以450 C煅燒1小時,可獲得體積平均粒徑68 nm的奈米氧化鋅粉體。由XRD分析晶形結構為六方晶系,FE-SEM觀察到粉體外貌為球形,奈米氧化鋅粉體之紫外線吸收特性於370 nm波長具有最大吸收度。
探討自行合成的奈米氧化鋅光催化降解甲基橙水溶液,初步結果顯示,反應時間200 min,甲基橙脫色率達90 %。
Many proposed methods to synthesize zinc oxide (ZnO) nanoparticles were proposed and developed in the literature. They could be classified as reactive precipitation, mechanochemical technique, sol-gel method and hydrothermal method, and so on. Among them, reactive precipitation has some advantages, including its convenience in processing, its low cost and its ease in production in large scale.
To increase the quality of production using the conventional reactive precipitation method, high-gravity reactive precipitation was presented in this work. Zinc hydroxide (Zn(OH)2) was synthesized using a rotating packed bed with zinc chloride (ZnCl2) and sodium hydroxide (NaOH) as reactants. After the calcination of Zn(OH)2, ZnO nanoparticles were produced. Also, the effects of rotating speed, reactants concentrations, ratio of reactants concentrations, liquid flow rate, and calcination temperature on particle size of ZnO nanoparticles were investigated.
The results indicated that ZnO naoparticles of about 68 nm were obtained at rotating speed of 1980 rpm, ZnCl2 concentration of 0.8 M, NaOH concentration of 1.6 M, ZnCl2 flow rate of 500 ml/min, NaOH flow rate of 500 ml/min, calcination time of 1 hour, and calcination temperature of 450 C. The XRD revealed that ZnO nanoparticles had a hexagonal structure. The FE-SEM presented that ZnO nanoparticles had a spherical shape. Based on the UV absorption properties detected, ZnO nanoparticles had a maximum absorption at the wavelength of 370 nm.
Photocatalytic degradation of methyl orange in aqueous solution was investigated using ZnO produced in this work. The preliminary result showed that the decolorization efficiency of methyl orange obtained at reaction time of 200 min was 90 %.
目錄
指導教授推薦書
口試委員會審定書
授權書 III
誌謝 IV
中文摘要 V
英文摘要 VI
目錄 VIII
圖目錄 XI
表目錄 XV
第一章 緒論 1
第二章 文獻回顧 4
2.1 氧化鋅的性質及應用 4
2.2 半導體光催化反應 8
2.2.1半導體特性 10
2.2.2光催化原理 12
2.3 氧化鋅粉體的合成方法 15
2.3.1 合成方法之比較 15
2.3.2化學沉澱法 18
2.3.2.1直接沉澱法 18
2.3.2.2均勻沉澱法 19
2.3.2.3反應物選擇 20
2.4 超重力技術簡介 21
第三章 實驗設備與方法 26
3.1 實驗架構 26
3.2 旋轉填充床合成氫氧化鋅 27
3.3 光催化反應應用 33
第四章 結果與討論 37
4.1 旋轉填充床合成氫氧化鋅之探討 37
4.1.1 反應物計量比 37
4.1.2 反應物濃度 44
4.1.3 旋轉填充床轉速 51
4.1.4 液體流量 57
4.2 熟化時間 64
4.3 煅燒溫度對氧化鋅的影響 67
4.4 氧化鋅應用於光催化試驗之探討 78
第五章 結論與建議 82
5.1 結論 82
5.2 建議 83
參考文獻 84
圖目錄
圖1-1 液-液式(a)旋轉填充床(b)旋轉盤(Chen et al., 2006).….….... 3
圖2-1 氧化鋅之X-光繞射標準圖譜:JCDPS 35-1647………….. 5
圖2-2 氧化鋅之六方晶系纖鋅礦結構(Coleman and Jagadish 2006) 6
圖2-3 氧化鋅的晶格結構示意圖:(a)和(c)為晶格常數,(uc)為沿(0001)方向鋅原子與氧原子平面的距離(王瑞琪, 2006) 6
圖2-4 奈米材料因次示意圖(劉仲明, 2002) 7
圖2-5 觸媒受光激發後之光催化反應示意圖(洪雨利, 2003) 14
圖2-6 光催化作用之光觸媒活性及電荷分離圖(Wang et al. 2002) 14
圖2-7 氣-液式旋轉填充床裝置圖(Pavitra et al. 2001) 24
圖2-8 液體流動的三種型態:孔隙流(pore flow)、液滴流(droplet flow)與液膜流(film flow)(Burns and Ramshaw 1996)…………………………………………………………. 24
圖2-9 超重力製備奈米碳酸鈣之裝置圖(Chen et al. 2000)…....…. 25
圖3-1 實驗架構圖………………………………………………….. 26
圖3-2 實驗裝置圖………………………………………………….. 30
圖3-3 實驗裝置圖………………………………………………….. 36
圖4-1 FE-SEM於[ZnCl2]:[NaOH]不同計量比下所生成的氫氧化鋅粉體形貌(a)(b) 1:1,(c)(d) 1:2,(e)(f) 1:4………….. 40
圖4-2 不同計量比對氫氧化鋅之數目粒徑分佈之影響……..…… 41
圖4-3 不同計量比對氫氧化鋅之體積粒徑分佈之影響……..…… 41
圖4-4 氫氧化鋅於[ZnCl2]:[NaOH]不同計量比之XRD分析(a) 1:1,(b) 1:2,(c) 1:4………………………………………. 42
圖4-5 FE-SEM於[ZnCl2]:[NaOH]不同濃度所生成的氫氧化鋅粉體形貌(a)(b) 0.1 M:0.2 M,(c)(d) 0.2 M:0.4 M,(e)(f) 0.3 M:0.6 M,(g)(h) 0.4 M:0.8 M,(i)(j) 0.8 M:1.6 M…… 47
圖4-6 不同濃度對氫氧化鋅之數目粒徑分佈之影響……..……… 48
圖4-7 不同濃度對氫氧化鋅之體積粒徑分佈之影響………..…… 48
圖4-8 氫氧化鋅於[ZnCl2]:[NaOH]不同濃度之XRD分析(a) 0.1 M:0.2 M,(b) 0.2 M:0.4 M,(c) 0.3 M:0.6 M,(d) 0.4 M:0.8 M,(e) 0.8 M:1.6 M…………………………………… 49
圖4-9 FE-SEM於不同轉速下所生成的氫氧化鋅形貌(a)(b) 380 rpm,(c)(d) 780 rpm,(e)(f) 1180 rpm,(g)(h) 1580 rpm,(i)(j) 1980 rpm……………………………………………...…...… 53
圖4-10 不同轉數對氫氧化鋅之數目粒徑分佈之影響…..………… 54
圖4-11 不同轉數對氫氧化鋅之體積粒徑分佈之影響……..……… 54

圖4-12 氫氧化鋅於不同轉速之XRD分析(a) 380 rpm,(b) 780 rpm,(c)1180 rpm,(d) 1580 rpm,(e) 1980 rpm…………... 55
圖4-13 FE-SEM於不同流量下所生成的氫氧化鋅形貌(a)(b) 100 ml/min,(c)(d) 200 ml/min,(e)(f) 300 ml/min,(g)(h) 400 ml/min,(i)(j) 500 ml/min……………………………..……. 60
圖4-14 不同流量對氫氧化鋅之數目粒徑分佈之影響………..…… 61
圖4-15 不同流量對氫氧化鋅之體積粒徑分佈之影響………..…… 61
圖4-16 氫氧化鋅於不同流量之XRD分析(a) 100 ml/min,(b) 200 mi/min,(c) 300 ml/min,(d) 400 ml/min,(e) 500 ml/min………………………………………………………... 62
圖4-17 氫氧化鋅於不同熟化時間的FE-SEM圖(a)(b) 0 h,(c)(d) 1.5 h,(e)(f) 3 h,(0.8 M ZnCl2,1.6 M NaOH,流量500 ml/min、轉速1980 rpm)……………………………..……... 65
圖4-18 氫氧化鋅於不同熟化時間的FE-SEM圖(a)(b) 0 h,(c)(d) 1.5 h,(e)(f) 3 h (0.2 M ZnCl2,0.4 M NaOH,流量300 ml/min、轉速1980 rpm)………………………….………… 66
圖4-19 (0.8 M ZnCl2,1.6 M NaOH,流量500 ml/min、轉速1980 rpm)所合成的氫氧化鋅粉體進行熱重分析………..…….... 69
圖4-20 FE-SEM於不同煅燒溫度下所生成的氧化鋅形貌(a)(b) 150 ℃,(c)(d) 250 ℃,(e)(f) 350 ℃,(g)(h) 450 ℃,(i)(j) 550 ℃……………………………………………..………… 71
圖4-21 FE-SEM氧化鋅外貌(a)(b)商用(Uni Region Bio-Tech),(c)(d)自製(Higee)…..……………………………..…………. 72
圖4-22 煅燒溫度對氧化鋅數目粒徑分佈之影響………..………… 73
圖4-23 煅燒溫度對氧化鋅體積粒徑分佈之影響…………..……… 73
圖4-24 氧化鋅於不同煅燒溫度之XRD分析(a) 550 ℃,(b) 450 ℃,(c) 350 ℃,(d) 250 ℃,(e) 150 ℃…………..……… 74
圖4-25 煅燒溫度對氧化鋅體積平均粒徑之影響………..………… 75
圖4-26 氧化鋅於不同煅燒溫度之UV-Vis分析(a) 550 ℃,(b) 450 ℃,(c) 350 ℃,(d) 250 ℃,(e) 150 ℃…………..……… 76
圖4-27 自製(Higee)與商用(nano ZnO)於UV-Vis分析….………… 76
圖4-28 甲基橙染料最大吸收波長之圖譜………………..……….... 80
圖4-29 甲基橙染料吸收值之檢量線圖…………………..……..….. 80
圖4-30 自製ZnO觸媒之吸附曲線及光催化反應曲線圖…..….….. 81
圖4-31 自製(Higee)與商用(nano ZnO)觸媒之光催化反應曲線圖………………………………………………….……….… 81
表目錄
表2-1 奈米氧化鋅製備方法之比較………………………...…….. 17
表3-1 旋轉填充床規格及操作範圍……………………...……….. 31
表3-2 實驗參數:計量比………………………………...……….. 32
表3-3 實驗參數:濃度(M)………………………………………… 32
表3-4 實驗參數:流量(ml/min)…………………………………… 32
表3-5 實驗參數:轉速(rpm)………………………………………. 32
表3-6 反應器設備規格……………………………………...…….. 35
表4-1 不同計量比對氫氧化鋅粒徑大小的影響………...……….. 43
表4-2 不同濃度對氫氧化鋅粒徑大小之影響……………………. 50
表4-3 不同轉速對氫氧化鋅粒徑大小之影響……………………. 56
表4-4 不同流量對氫氧化鋅粒徑大小之影響……………………. 63
表4-5 氧化鋅高溫煅燒之程序(升溫10℃/min)………………….. 77
Behnajady, M.A., Modirshahla, N., Daneshvar, N. and Rabbani, M. Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode. Journal of Hazardous Materials, 140, 257-263 (2007).

Burns, J.R., and Ramshaw, C. Process intensification: Visual study of liquid maldistribution in rotating packed beds. Chemical Engineering Science, 51, 1347-1352 (1996).

Caillaud, F., Smith, A. and Baumard, J. F. Deposition of ZnO films on polycrystalline alumina substrates by spray pyrolysis. Journal of the European Ceramic Society, 6, 313-316 (1990)

Chen, J.F., Wang, Y.H., Guo, F., Wang, X.M., and Zheng, C. Synthesis of nanoparticles with novel technology: High-Gravity Reactive Precipitation. Industrial and Engineering Chemistry Research, 39, 948-954 (2000).

Chen, J.-F., Shao, L., Guo, F., and Wang, X.-M. Synthesis of nano-fibers of aluminum hydroxide in novel rotating packed bed reactor. Chemical Engineering Science, 58, 569-575 (2003).

Chen, J. and Shao, L. Mass production of nanoparticles by high gravity reactive precipitation technology with low cost. China Particuology, 1, 64-69 (2003).

Chen, J., Li, Y., Wang, Y., Yun, J. and Cao, D. Preparation and characterization of zinc sulfide nanoparticles under high-gravity environment. Materials Research Bulletin, 39, 185-194 (2004).

Chen, Y.S., Liu, H.S., Lin, C.C. and Liu, W.T. Micromixing in a rotating packed bed. Journal of Chemical Engineering of Japan, 37, 1122-1128 (2004).

Chen, Y.S., Tai, C.Y.D., Chang, M.H. and Liu, H.S. Characteristics of micromixing in a rotating packed bed. Journal of the Chinese Institute of Chemical Engineers, 37, 63-69 (2006).

Coleman, V.A., Jagadish, C., Chennupati, J. and Stephen, P. Basic properties and applications of ZnO. Zinc Oxide Bulk, Thin Films and Nanostructures. Elsevier Science Ltd, Oxford, pp. 1-20 (2006).

Comparelli, R., Fanizza, E., Curri, M.L., Cozzoli, P.D., Mascolo, G. and Agostiano, A. UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Applied Catalysis B: Environmental, 60, 1-11 (2005).

Cun, W., Jincai, Z., Xinming, W., Bixian, M., Guoying, S., Ping'an, P. and Jiamo, F. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied Catalysis B: Environmental, 39, 269-279 (2002).

Daneshvar, N., Aber, S., Seyed Dorraji, M.S., Khataee, A.R. and Rasoulifard, M.H. Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separation and Purification Technology, 58, 91-98 (2007).

Du, J., Liu, Z., Huang, Y., Gao, Y., Han, B., Li, W. and Yang, G. Control of ZnO morphologies via surfactants assisted route in the subcritical water. Journal of Crystal Growth, 280, 126-134 (2005).

Gao, P.X., Lao, C.S., Ding, Y. and Wang, Z.L. Metal/semiconductor core/shell nanodisks and nanotubes. Advanced Functional Materials, 16, 53-62 (2006).

Gao, X.D., Li, X.M., Yu, W.D., Li, L., Peng, F. and Zhang, C.Y. Microstructure analysis and formation mechanism of ZnO nanoporous film via the ultrasonic irradiation mediated SILAR method. Journal of Crystal Growth, 291, 175-182 (2006).

Guo, K., Guo, F., Feng, Y., Chen, J., Zheng, C. and Gardner, N.C. Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor. Chemical Engineering Science, 55, 1699-1706 (2000).

Han, Y., Ding, Y., Yin, W. and Ma, Z. Preparation of homogeneous ZnO nanoparticles via precipitation-pyrolysis with Zn5(CO3)2(OH)6 as precursor. Transactions of Nonferrous Metals Society of China, 16, 1205-1212 (2006).

He, Q., Chen, J., Zhao, W., Liu, Z., Ren, H., and Li, X. Synthesis of web-like-structured ZnO cluster with strong photoluminescence intensity. Journal of Physics and Chemistry of Solids, 66, 31-35 (2005).

He, Y. Synthesis of ZnO nanoparticles with narrow size distribution under pulsed microwave heating. China Particuology, 2, 168-170 (2004).

Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W. Environmental applications of semiconductor Photocatalysis. Chemical Reviews, 95, 69-96 (1995).

Hong, R., Pan, T., Qian, J., and Li, H. Synthesis and surface modification of ZnO nanoparticles. Chemical Engineering Journal, 119, 71-81 (2006).

Huang, Y.Q., Meidong, L., Yike, Z., Churong, L., Donglin, X. and Shaobo, L. Preparation and properties of ZnO-based ceramic films for low-voltage varistors by novel sol-gel process. Materials Science and Engineering B, 86, 232-236 (2001).

Inoue, T., Fujishima, A., Konishi, S. and Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspension of semiconductor powers. Nature, 277, 637-638 (1979).

Jitianu, M. and Goia, D.V. Zinc oxide colloids with controlled size, shape, and structure. Journal of Colloid and Interface Science, 309, 78-85 (2007).

Kanade, K.G., Kale, B.B., Aiyer, R.C. and Das, B.K. Effect of solvents on the synthesis of nano-size zinc oxide and its properties. Materials Research Bulletin, 41, 590-600 (2006).

Kawano, T. and Imai, H. Characteristically shaped ZnO particles produced by periodic precipitation in organic gel media. Journal of Crystal Growth, 283, 490-499 (2005).

Li, Y., Li, G. and Yin, Q. Preparation of ZnO varistors by solution nano-coating technique. Materials Science and Engineering: B, 130, 264-268 (2006).

Liu, J., Huang, X., Duan, J., Ai, H. and Tu, P. A low-temperature synthesis of multiwhisker-based zinc oxide micron crystals. Materials Letters, 59, 3710-3714 (2005).

Liu, J., Huang, X., Li, Y., Duan, J. and Ai, H. Large-scale synthesis of flower-like ZnO structures by a surfactant-free and low-temperature process. Materials Chemistry and Physics, 98, 523-527 (2006).

Liu, J., Huang, X., Li, Y., Duan, J., Ai, H. and Ren, L. Large-scale and low-temperature synthesis of maize-shaped ZnO micron flowers with excellent optical properties. Materials Science and Engineering: B, 127, 85-90 (2006).

Lorenz, A., Ott, J., Harrer, M., Preissner, E.A., Whitehead, A.H. and Schreiber, M. Modified citrate gel techniques to produce ZnO-based varistors (Part I- Microstructural Characterisation). Journal of Electroceramics, 6, 43-54 (2001).

Lu, C.H. and Yeh, C.H. Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceramics International, 26, 351-357 (2000).

Masuda, Y., Kinoshita, N. and Koumoto, K. Morphology control of ZnO crystalline particles in aqueous solution. Electrochimica Acta, 53, 171-174 (2007).

Moballegh, A., Shahverdi, H.R., Aghababazadeh, R. and Mirhabibi, A.R. ZnO nanoparticles obtained by mechanochemical technique and the optical properties. Surface Science, 601, 2850-2854 (2007).

Mondelaers, D., Vanhoyland, G., Van den Rul, H., D'Haen, J., Van Bael, M.K., Mullens, J. and Van Poucke, L.C. Synthesis of ZnO nanopowder via an aqueous acetate-citrate gelation method. Materials Research Bulletin, 37, 901-914 (2002).

Music, S., Dragcevic, Popovic, S. and Ivanda, M. Precipitation of ZnO particles and their properties. Materials Letters, 59, 2388-2393 (2005).

Music, S., Saric, A. and Popovic, S. Dependence of the microstructural properties of ZnO particles on their synthesis. Journal of Alloys and Compounds, 448, 277-283 (2008).

Ni, Y.H., Wei, X.W., Hong, J.M. and Ye, Y. Hydrothermal preparation and optical properties of ZnO nanorods. Materials Science and Engineering B, 121, 42-47 (2005).

Pan, A., Yu, R., Xie, S., Zhang, Z., Jin, C. and Zou, B. ZnO flowers made up of thin nanosheets and their optical properties. Journal of Crystal Growth, 282, 165-172 (2005).

Parida, K.M., Dash, S.S. and Das, D.P. Physico-chemical characterization and photocatalytic activity of zinc oxide prepared by various methods. Journal of Colloid and Interface Science, 298, 787-793 (2006).

Parida, K.M. and Parija, S. Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Solar Energy, 80, 1048-1054 (2006).

Pirkanniemi, K., and Sillanpaa, M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere, 48, 1047-1060 (2002).
Ramshaw C. and Mallinson R. H . Mass transfer process. United States Patent 4283255 (1981).
Rao, D.P., Bhowal, A. and Goswami, P.S. Process intensification in rotating packed beds (HIGEE): an appraisal. Industrial and Engineering Chemistry Research, 43, 1150-1162 (2004).

Ristic, M., Music, S., Ivanda, M. and Popovic, S. Sol-gel synthesis and characterization of nanocrystalline ZnO powders. Journal of Alloys and Compounds, 397, L1-L4 (2005).

Rodriguez-Paez, J.E., Caballero, A.C., Villegas, M., Moure, C., Duran, P. and Fernandez, J.F. Controlled precipitation methods: formation mechanism of ZnO nanoparticles. Journal of the European Ceramic Society, 21, 925-930 (2001).
Sandilya, P., Rao, D.P., Sharma, A. and Biswas, G. Gas-phase mass transfer in a centrifugal contactor. Industrial and Engineering Chemistry Research, 40, 384-392 (2001).

Shen, Z.G., Chen, J.F. and Yun, J. Preparation and characterizations of uniform nanosized BaTiO3 crystallites by the high-gravity reactive precipitation method. Journal of Crystal Growth, 267, 325-335 (2004).

Skapin, S.D., Drazic, G., and Orel, Z.C. Microstructure of nanoscale zinc oxide crystallites. Materials Letters, 61, 2783-2788 (2007).

Sobana, N., and Swaminathan, M. The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Separation and Purification Technology, 56, 101-107 (2007).

Subrahmanyam, M., Kaneco, S. and Alonso-Vante, N. A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity. Applied Catalysis B: Environmental, 23, 169-174 (1999).

Tai, C.Y., Tai, C.T., and Liu, H.S. Synthesis of submicron barium carbonate using a high-gravity technique. Chemical Engineering Science, 61, 7479-7486 (2006).

Tai, C.Y., Tai, C.T., Chang, M.H. and Liu, H.S. Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Industrial and Engineering Chemistry Research, 46, 5536-5541 (2007).

Tonto, P., Mekasuwandumrong, O., Phatanasri, S., Pavarajarn, V. and Praserthdam, P. Preparation of ZnO nanorod by solvothermal reaction of zinc acetate in various alcohols. Ceramics International, 34, 57-62 (2008).

Wahab, R., Ansari, S.G., Kim, Y.S., Khang, G. and Shin, H.S. Effect of hydroxylamine hydrochloride on the floral decoration of zinc oxide synthesized by solution method. Applied Surface Science, 254, 2037-2042 (2008).

Wang, H., Xie, C., Zhang, W., Cai, S., Yang, Z., and Gui, Y. Comparison of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous Materials, 141, 645-652 (2007).

Wang, H. and Xie, C. The effects of oxygen partial pressure on the microstructures and photocatalytic property of ZnO nanoparticles. Physica E: Low-dimensional Systems and Nanostructures, 40, 2724-2729 (2008).

Wang, Z.L. Nanostructures of zinc oxide. Materials Today, 7, 26-33 (2004).

Wang, H., Xie, C., Zhang, W., Cai, S., Yang, Z. and Gui, Y. Comparison of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous Materials, 141, 645-652 (2007).

Wang, C.T. and Lin, J.C. Surface nature of nanoparticle zinc-titanium oxide aerogel catalysts. Applied Surface Science, 254, 4500-4507 (2008).

Wu, L., Wu, Y., Shi, Y. and Wei, H. Synthesis of ZnO nanorods and their optical absorption in visible-light region. Rare Metals, 25, 68-73 (2006).

Wu, L., Wu, Y. and Wei, L. Preparation of ZnO Nanorods and optical characterizations. Physica E: Low-dimensional Systems and Nanostructures, 28, 76-82 (2005).

Wu, W. and Jiang, Q. Preparation of nanocrystalline zinc carbonate and zinc oxide via solid-state reaction at room temperature. Materials Letters, 60, 2791-2794 (2006).

Zhang, S.C. and Li, X.G. Preparation of ZnO particles by precipitation transformation method and its inherent formation mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 226, 35-44 (2003).

Zhong, J., Shen, Z., Yang, Y. and Chen, J. Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment. International Journal of Pharmaceutics, 301, 286-293 (2005).

Zou, G., Yu, D., Wang, D., Zhang, W., Xu, L., Yu, W. and Qian, Y. Controlled synthesis of ZnO nanocrystals with column-, rosette-and fiber-like morphologies and their photoluminescence property. Materials Chemistry and Physics, 88, 150-154 (2004).

Randolph ,A.D, and Larson, M.A, Theory of particulate processes : analysis and techniques of continuous crystallization. San Diego : Academic In Press (1988)

張名惠,「在超重力系統中製備氫氧化鎂與氧化鎂奈米粉體」,碩士學位論文,台灣大學化學工程研究所,西元2005年

劉驥,「旋轉填充床內微觀混合研究及液-液相法製備碳酸鍶奈米粉體」,博士學位論文,北京大學化學工程研究所,西元2000年

陳秀連,「以化學法製備均一粒徑氧化鋅粉體與發光特性之研究」,碩士學位論文,台灣科技大學材料工程研究所,西元2002年
王瑞琪,「新穎氧化鋅奈米材料的成長與光電性質」,博士學位論文,成功大學材料研究所,西元2005年

李婉惠,「以UV/TiO2程序光還原液相及氣相二氧化碳反應行為之研究」,碩士學位論文,台灣科技大學化學工程研究所,西元1998年
洪雨利,「溶膠凝膠法製備奈米二氧化鈦觸媒進行光催化還原二氧化碳之批次反應研究」,碩士學位論文,中山大學環境工程研究所,西元2003年

黃苑茹,「奈米級陶瓷氧化物市場分析與開發策略」,碩士學位論文,成功大學資源工程研究所,西元2003年

呂婉華,「以沉澱法製備氧化鋅及合成步驟對結晶粒徑的影響」,碩士學位論文,交通大學材料科學研究所,西元2003年

胡興中,「觸媒原理應用」,高立,西元1991年

劉仲明、郭東瀛,「競逐原子世界奈米材料」,經濟部工業局,西元2002年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊