跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宏國
研究生(外文):Hung Kuo Tsai
論文名稱:改質黏土之添加對聚對苯二甲酸丙二酯/聚醯胺6I摻合物物理性質之影響
論文名稱(外文):The Effect of Adding Organoclay on the Physical Properties of Poly(trimethylene terephthalate)/ Poly(hexamethylene isophthalamide) Blends
指導教授:邱方遒
指導教授(外文):F. C. Chiu
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:125
中文關鍵詞:聚對苯二甲酸丙二酯聚醯胺6I黏土摻合物複合材料
外文關鍵詞:PTTPA 6IClayBlendsComposites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究利用熔融法製備聚對苯二甲酸丙二酯(PTT)與聚醯胺6I (PA 6I)摻合物/黏土複合材料,並使用廣角X-ray繞射儀(WAXD)、微差掃瞄熱卡計(DSC)、熱重分析儀(TGA)、掃描式電子顯微鏡(SEM)/能量分散光譜儀(EDS)、偏光顯微鏡(PLM)、穿透式電子顯微鏡(TEM)等儀器,探討黏土在複合材中分散性及摻合物與複合材料結晶行為、熔融行為、熱穩定性、晶體結構及相形態。結果顯示: (1) 商品名為30B之改質黏土,在複合材中主要呈現微米(μm)級尺寸,且主要分佈在PA 6I相中。(2) PA 6I有阻礙PTT結晶作用;黏土30B具成核效應,可加速PTT結晶速率。(3) PTT呈現熔融再結晶之多重熔融峰現象,隨著PA 6I含量增加,PTT熔融再結晶之結晶峰往低溫偏移,熔融再結晶現象逐漸不明顯;黏土30B使PTT熔融再結晶之結晶峰往高溫偏移,添加PA 6I及黏土30B會影響再結晶現象而不會影響PTT再熔融的熔點變化。(4) 隨著PA 6I含量增加,樣品之熱穩定性提升;黏土30B對樣品熱穩定性無顯著影響。(5) PTT晶體結構沒有受到PA 6I及黏土30B的加入而有所改變。(6) 添加PA 6I及黏土30B使樣品分散相之平均尺寸變大,且黏土30B主要分佈在PA 6I相中,並可使PTT球晶尺寸變小。
Abstract
In this study, PTT/PA 6I blends and PTT/PA 6I/clay (nano)composites were prepared by melt-mixed technique. Wide angle x-ray diffractometer (WAXD), differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), scanning electron microscope (SEM)/energy dispersive spectrometer (EDS), polarized light microscope (PLM), and transmission electron microscope (TEM) were used to characterize the dispersibility of clay in the composites, crystallization behavior, melt behavior, thermal stability, crystal structure, and morphology of the blends/composites. The results showed that:(a) the clay 30B was not dispersed at a fine scale in the composites, and it mainly located inside the PA 6I phase; (b) the crystallization ability of PTT was hindered by PA 6I, and clay 30B served as a nucleating agent for PTT; (c) the recrystallization of PTT shifted to lower temperatures in the blends, and it decreased with the PA 6I content. On the contrary, the recrystallization of PTT shifted to higher temperatures in the composites, and it increased with the clay 30B content; the multiple melting behavior of PTT was not affected with the additions of PA 6I and clay 30B; (d) the thermal stability of the blends/composites increased with the PA 6I content; the clay 30B did not affect the thermal stability of the composites; (e) the crystal structure of PTT was not affected with the additions of PA 6I and clay 30B; (f) the dispersed domain size of the immiscible PTT/PA 6I blends increased with the addition of clay 30B; the spherulite size of PTT decreased evidently after adding the clay 30B.
目錄
指導教授推薦書
口試委員會審定書
授權書 iii
誌 謝 iv
中文摘要 v
英文摘要 vi
目錄 vii
表目錄 xi
圖目錄 xiii
第一章 緒論 1
第二章 相關原理與文獻回顧 3
2.1 聚對苯二甲酸丙二酯( PTT ) 3
2.2 聚對苯二甲酸丙二酯( PTT )相關摻合物 5
2.3 聚醯胺6I ( PA 6I ) 7
2.4 聚醯胺6I ( PA 6I )相關摻合物 8
2.5 黏土(Cay) 8
2.5.1 黏土的構造與種類 8
2.5.2 蒙脫土 9
2.6 高分子/黏土奈米複合材料 11
2.6.1 製備 11
2.6.2分散形態 12
2.7 聚對苯二甲酸丙二酯( PTT ) /黏土奈米複合材料 13
2.8 高分子結晶 15
2.8.1 結晶化機制 15
2.8.2 成核理論 16
2.8.3 結晶動力學 17
2.8.4 結晶相形態 24
第三章 實驗部分 26
3.1 材料 26
3.2 儀器設備 27
3.3 實驗步驟 29
3.4 性質分析 29
3.4.1 微差掃描熱卡計(DSC) 29
3.4.2 廣角X光繞射儀(WAXD) 30
3.4.3 掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDS) 31
3.4.4 穿透式電子顯微鏡(TEM) 32
3.4.5 熱重分析儀(TGA) 32
3.4.6 偏光顯微鏡 ( PLM ) 32
3.4.7 熔融指數測定儀 ( MI ) 33
第四章 結果與討論 34
4.1 黏土(30B)分散性 34
4.1.1 XRD分析 34
4.1.2 SEM/EDS分析 34
4.1.3 TEM分析 35
4.2 相容性 35
4.3 結晶行為 36
4.3.1冷結晶 36
4.3.2 非等溫結晶行為 36
4.4熔融行為 42
4.5 熱穩定性 44
4.6 晶體結構 44
4.7 相形態 45
4.7.1 斷裂面相形態 45
4.7.2 熔融相形態 46
4.7.3 結晶相形態 47
第五章 結論 49
參考文獻 51

表目錄
表2- 1、Some properties of unfilled aromatic polyesters ofPET, PBT and PTT 58
表2- 2、Some properties of glass fibre reinforced aromatic polyesters of PET, PBT and PTT 58
表2- 3、Physical meaning of Avrami exponent n 59

表 3- 1、以熔融法摻合製備PTT/PA 6I/30B不同比例樣之配方 60

表 4- 1、PTT/PA 6I/30B樣品以20℃/min速率升溫之玻璃轉移溫度、冷結晶峰溫度與冷結晶放熱焓變化 61
表 4- 2、PTT/PA 6I/30B樣品以10℃/min及40℃/min速率降溫之熔融結晶溫度及熔融結晶熱焓變化 62
表 4- 3、PTT/PA 6I/30B樣品之非等溫結晶參數 63
表 4- 4、PTT/PA 6I/30B樣品非等溫結晶之Modified Avrami equation 參數 65
表 4- 5、PTT/PA 6I/30B樣品非等溫結晶之Ozawa equation 參數 66
表 4- 6、PTT/PA 6I/30B樣品非等溫結晶之Mo method 參數 67
表 4- 7、PTT/PA 6I/30B樣品非等溫結晶Kissinger方程式之活化能 68
表 4- 8、PTT/PA 6I/30B樣品以20℃/min速率升溫之熔融溫度 ( pre-cooling rate : 10℃/min及40℃/min ) 69
表 4- 9、PTT/PA 6I/30B 不同比例樣品之非等溫結晶後之熔融溫度( heating rate : 10℃/min及40℃/min ) 70
表 4- 10、PTT/PA 6I/30B不同比例樣品以260℃混練之樣品於氮氣環境下5%、50%熱重損失溫度及最快熱重損失溫度與殘餘量 71


圖目錄
圖 2- 1、1,3-PDO單體的合成 72
圖 2- 2、直接酯化法合成PTT 72
圖 2- 3、酯交換法合成 72
圖 2- 4、PTT蒙脫土的結構 73
圖 2- 5、黏土在高分子基材中的分散形態 73
圖 2- 6、Typical types of nucleation; n is the net number of newly formed surfaces. 74
圖 2- 7、Fringed micelle model of the crystalline-amorphous structure of polymer. 74
圖 2- 8、Schematic two-dimensional representations of models of the fold surface in polymer lamellae: (a) sharp folds, (b) “switchboard” model, (c) loose loops with adjacent reentry, (d) a combination of several features. 75
圖 2- 9、球晶模型 ( Models of spherulite ):(a ) 正常球晶, ( b ) 樹枝狀球晶, ( c ) 圈環狀球晶 75

圖 3- 1、PTT/PA 6I/30B 熔融法製備樣品之流程 76

圖 4- 1、改質黏土30B及PTT/PA 6I/30樣品之WAXD圖譜 77
圖 4- 2、PTT/PA 6I/30B樣品之SEM/EDS照片:(a) 100/0/3 phr, (b) 75/25/3 phr, (c) 50/50/3 phr 78
圖 4- 3、PTT/PA 6I/30B不同比例樣品之TEM照片 80
圖 4- 4、PTT/PA 6I/30B樣品經液態氮驟冷後升溫之DSC圖譜(heating rate : 20℃/min) 81
圖 4- 5、PTT/PA 6I/30B樣品經液態氮驟冷後升溫之DSC冷結晶圖譜(heating rate : 20℃/min) 82
圖 4- 6、PTT/PA 6I/30B樣品以不同降溫速率之DSC圖譜: (a) 10℃/min, (b) 40℃/min 83
圖 4- 7、PTT/PA 6I/30B樣品之非等溫結晶DSC圖譜: (a) 100/0/0, (b) 100/0/3 phr 84
圖 4- 8、PTT/PA 6I/30B樣品之相對結晶度對溫度關係圖:(a) 100/0/0, (b) 100/0/3 phr, (c) 75/25/0, (d) 75/25/3 phr 86
圖 4- 9、PTT/PA 6I/30B樣品之相對結晶度對時間關係圖:(a) 100/0/0, (b) 100/0/3 phr, (c) 75/25/0, (d) 75/25/3 phr 87
圖 4- 10、PTT/PA 6I/30B樣品之非等溫結晶Modified Avrami方程式分析圖:(a) 100/0/0, (b) 100/0/3 phr, (c) 75/25/0, (d) 75/25/3 phr 88
圖 4- 11、PTT/PA 6I/30B樣品之非等溫結晶Ozawa方程式分析圖:(a) 100/0/0, (b) 100/0/3 phr, (c) 75/25/0, (d) 75/25/3 phr 89
圖 4- 12、PTT/PA 6I/30B樣品之非等溫結晶ln Φ對ln t關係圖:(a) 100/0/0, (b) 100/0/3 phr, (c) 75/25/0, (d) 75/25/3 phr 90
圖 4- 13、PTT/PA 6I/30B樣品之非等溫結晶 [ln(Φ/TP2)]對(1/TP)關係圖 91
圖 4- 14、PTT/PA 6I/30B樣品以20℃/min升溫速率之DSC圖譜 (pre-cooling rate: (a) 10℃/min, (b) 40℃/min) 92
圖 4- 15、PTT/PA 6I/30B樣品非等溫結晶後之熔融DSC圖譜(heating rate : 20℃/min): (a) 100/0/0, (b) 100/0/3 phr 93
圖 4- 16、PTT/PA 6I/30B樣品在不同環境下之TGA熱重損失圖譜: (a) N2, (b) Air 95
圖 4- 17、PTT/PA 6I/30B樣品在不同環境下之DTGA最快熱重損失溫度: (a) N2, (b) Air 96
圖 4- 18、PTT/PA 6I/30B樣品以10 ℃/min降溫處理之WAXD圖譜 97
圖 4- 19、PTT/PA 6I/30B樣品之SEM照片:(a) 100/0/0, (b) 100/0/3 phr, (c) 75/25/0, (d) 75/25/3 phr, (e) 50/50/0, (f) 50/50/3 phr 98
圖 4- 20、PTT/PA 6I/30B樣品經Formic acid蝕刻處理之SEM照片:(a) 100/0/0, (b) 100/0/3 phr, (c) 75/25/0, (d) 75/25/3 phr, (e) 50/50/0, (f) 50/50/3 phr 100
圖 4- 21、PTT/PA 6I/30B 不同比例樣品中分散相之數量平均尺寸與標準差 101
圖 4- 22、純PTT與純PA 6I 於不同熔融溫度下之熔融指數(MI)比較 102
圖 4- 23、PTT/PA 6I/30B樣品於260℃熔融之PLM熔融相形態照片:(a) 100/0/0, (b) 100/0/3 phr, (c) 75/25/0, (d) 75/25/3 phr 103
圖 4- 24、PTT/PA 6I/30B樣品於260℃熔融後以10℃/min降溫之PLM結晶相形態照片:(a) 100/0/0, (b) 100/0/3 phr, (c) 75/25/0, (d) 75/25/3 phr 105
圖 4- 25、PTT/PA 6I/30B樣品於260℃熔融後以40℃/min降溫之PLM結晶相形態照片:(a) 100/0/0, (b) 100/0/3 phr, (c) 75/25/0, (d) 75/25/3 phr 107
參考文獻

1. J. R. Whinfield, J. T. Dickson, “Improvements relating to the manufacture of highly polymeric substances” British Patent, 578, 79 (1941)
2. 李奐儀, “聚對苯二甲酸二丙酯(PTT)/無定形聚醯胺(PA 6I)摻合物性質探討’’,長庚大學, 碩士論文, 民國92年
3. H. A. Khonakdar, S. H. Jafari, A. Asadinezhad, “A Review on homopolymer, blends, and nanocomposites of poly(trimethyleneterephthalate) as a new addition to the aromatic polyesters class”, Iran. Polym. J., 17, 19 (2008)
4. M. Pyda, A. Boller, J. Grebowicz, H. Chuah, B. V. Lebedev, B. Wunderlich, “Heat capacity of Poly(trimethylene terephthalate)”, J. Polym. Sci. Polym. Phys. Ed., 36, 2499 (1998)
5. F. C. Chang, J. M. Huang, M. Y. Ju, “Crystallization and melting behaviors of poly(trimethylene terephthalate) ”, J. Polym. Res., 6, 259 (1999)
6. P. D.Hong, W. J. Yeh, W. T. Chung, “Melting behavior of Poly(trimethylene terephthalate)”, J. Appl. Polym. Sci., 83, 2426 (2002)
7. P. Supaphol, P. Srimoaon, N. Dangseeyun, “Multiple melting behavior in isothermally crystallized poly(trimethylene terephthalate)”, Eur. Polym. J., 40, 599 (2004)
8. P. Supaphol, N. Apiwanthanakorn, M. Nithitanakul, “Non-isothermal melt-crystallization kinetics of poly(trimethylene terephthalate)”, Polym. Test., 23, 817 (2004)
9. J. Sheng, M. L. Xue, Y. L. Yu, H. H. Chuah, “Nonisothermal crystallization kinetics and spherulite morphology of poly(trimethylene terephthalate)”, Eur. Polym. J., 40, 811 (2004)
10. S. P. Dandurand, S. Perez, J. R. Revol, F. Brisse, “The crystal structure of poly(trimethylene terephthalate) by X-ray and electron diffraction”, Polymer, 20, 419 (1979)
11. B. Wang, C. Y. Li, J. Hanzlicek, S. Z. D. Cheng, P. H. GEIL, J. Grebowicz, R. M. Ho, “ Poly(trimethylene terephthalate) crystal structure amd morphology in different length scales”, Polymer, 42, 7171 (2001)
12. P. D. Hong, W. T. Chuang, C. F. Hsu, “Crystallization kinetics and morphology of poly(trimethylene terephthalate)”, Polymer, 43, 3335 (2002)
13. P. D. Hong, W. T. Chuang, H. H. Chuah, “Effects of crystallization behavior on morphological change in poly(trimethylene terephthalate) spherulites”, Polymer, 45, 2413 (2004)
14. E. M. Woo, H.Y. Kuo, “Miscibility in two blend systems of homologous semicrystalline aryl polyesters involving poly(trimethylene terephthalate)”, Polym. J., 35, 236 (2003)
15. P. Supaphol, N. Dangseeyun, P. Thanomkiat, M. Nithitanakul, “Thermal, crystallization, mechanical, and rheological characteristics of poly(trimethylene terephthalate)/poly(ethylene terephthalate) blends”, J. Polym. Sci. Polym. Phys.Ed., 42, 676 (2004)
16. P. Supaphol, N. Dangseeyun, M. Nithitanakul, “Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)poly(butylene terephthalate) blends”, Polym. Test., 23, 187 (2004)
17. H. Liang, F. Xie, B. Chen, F.guo, Z.Jin, F. Luo, “Miscibility and melting behavior of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends”, J. Appl. Polym. Sci. , 107, 431 (2008)
18. P. Supaphol, P. Krutphun, “Thermal and crystallization characteristics of poly(trimethylene terephthalate)/poly(ethylene naphthalate) blends”, Eur. Polym. J., 41, 1561 (2005)
19. E. M. Woo, D. H. Huang, L. T. Lee, “A comparative study on transreactions induced phase changes in blends of poly(trimethylene terephthalate) and poly(ethylene naphthalate) upon annealing”, Coll. Polym. Sci., 284, 843 (2006)
20. F. C. Chiu, K. H. Huang, J. C. Yang, “Miscibility and thermal properties of melt-mixed poly(trimethylene terephthalate)-amorphous copolyester blends”, J. Polym. Sci. Polym. Phys.Ed., 41, 2264 (2003)
21. E. M. Woo, L. T. Lee, “Reaction-induced miscibility in blends comprised of bisphenol-A polycarbonate and poly(trimethylene terephthalate)” Coll. Polym. Sci., 282, 1308 (2004)
22. F. C. Chiu, M. H. Ting, “Thermal properties and phase morphology of melt-mixed poly(trimethylene terephthalate)/polycarbonate blends-mixing time effect”, Polym. Test., 26, 338 (2007)
23. E. M. Woo, P. L. Wu, “Linear versus nonlinear determinations of equilibrium melting temperatures of poly(trimethylene terephthalate) and miscible blend with poly(ether imide) exhibiting multiple melting peaks”, J. Polym. Sci. Polym. Phys. Ed., 40, 1571 (2002)
24. F. C. Chang, J. M. Huang, “Miscibility, melting, and crystallization of poly(trimethylene terephthalate)/poly(ether imide) blends”, J. Appl. Polym. Sci., 84, 850 (2002)
25. A. Asadinezhad, A.Yavari, S.H. Jafari, H.A. Khonakdar, F. Böhme, R. Hässler, “Phase morphology and thermal characteristics of binary blends based on PTT and PA12”, Polym. Bull., 54, 205 (2005)
26. A. Asadinezhad, S. H. Jafari, H. A. Khonakdar, F. Bohme, R. Hassler, L. Haussler, “Kinetics of isothermal crystallization and subsequent melting behavior of PTT/PA12 blend”, J. Appl. Polym. Sci., 106, 1964 (2007)
27. F. C. Chiu, H. Y. Lee, Y. H. Wang, “Thermal properties and phase morphology of melt-mixed poly(trimethylene terephthalate)/poly(hexamethylene isophthalamide) blends”, J. Appl. Polym. Sci., 107, 3831 (2008)
28. T. S. Ellis, “Influence of structure on phase behavior of polyamide blends”, Macromolecules 24, 3845 (1991)
29. K. L. L. Eersels, G.. Groeninckx, “Influence of interchange reactions on the crystallization and melting behaviour of polyamide blends as affected by the processing conditions”, Polymer, 37, 983 (1996)
30. W. B. Lake, S. Kalakkunnath, D. S. Kalika, “Crystallization, melting, and rheology of reactive polyamide blends”, J. Appl. Polym. Sci. 94, 1245 (2004)
31. H. L. Tyan, Y. C. Liu, K. H. Wei, “Enhancement of imidization of poly(amic acid) through forming poly(amic acid)/organoclay nanocomposites”, Ploymer, 40, 4877 (1999)
32. W. M. Carty, “The American Ceramic Socieey Bulletin”, (1999)
33. 陳榮權, “有機改質黏土之添加對芳香族聚酯(PET, PTT及PBT)熱性質與結晶相形態之影響比較’’,長庚大學, 碩士論文, 民國93年
34. X. Hu and A. J. Lesser, “Effect of a silicate filler on the crystal morphology of poly(trimethylene terephthalate)/clay nanocomposites”, J. Polym. Sci, Polym. Phys. Ed., 41, 2275 (2003).
35. K. Yano, A. Usuki and A. Okada, “Synthesis and properties of polyimide-clay hybrid films”, J. Polym. Sci. Polym. Chem. Ed., 35, 2289 (1997).
36. J. Wen and G. L. Wilkes, “Organic/inorganic hybrid network materials by the sol-gel approach”, Chem. Mater., 8, 1667 (1996).
37. E. S. Ntsihlele and A. Pizzi, “Cross-linked coatings by co-reaction of isocyanate-methoxymethyl melamine systems”, J. Appl. Polym. Sci., 55, 153 (1994).
38. C. Zilg, R. Thomann, R. Mulhaupt and J. Finter, “Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates”, Adv. Mater., 11, 49 (1999).
39. Z. Liu, K. Chen, D. Yan, “Crystallization, morphology, and dynamic mechanical properties of poly(trimethylene terephthalate)-clay nanocomposites”, Eur. Polym. J., 39, 2359 (2003)
40. C. F. Ou, “Nanocomposites of Poly(trimethylene terephthalate) with Organoclay”, J. Appl. Polym. Sci., 89, 3315 (2003)
41. C. F. Ou, “Crystallization behavior and thermal stability of poly(trimethylene terephthalate)/clay nanocomposites”, J. Polym. Sci. Polym. Phys. Ed., 41, 2902 (2003)
42. Z. Liu, K. Chen, D. Yan, “Nanocomposites of poly(trimethylene terephthalate) with various organoclays morphology, mechanical and thermal properties”, Polym. Test., 23, 323 (2004)
43. X. Hu, A.J. Lesser, “Non-isothermal crystallization of poly(trimethylene terephthalate) (PTT)/clay nanocomposites”, Macromol. Chem. Phys, 205, 574 (2004)
44. J. H. Chang, S. J. Kim, S. S. Im, “Poly(trimethylene terephthalate) nanocomposite fibres by in situ intercalation polymerization: thermo-mechanical properties and morphology (Ⅰ)”, Polymer, 45, 5171 (2004)
45. J. H. Chang, S. J. Kim, “Polyester nanocomposite fibers: comparison of their properties with poly(ethy1ene terephthalate) and poly(trimethy1ene terephthalate) (Ⅱ)”, Polym. Bull., 52, 289 (2004)
46. J. Nazabal, U. Gurmendi, J.I. Eguiazabal, “Structure and properties of nanocomposites with a poly(trimethylene terephthalate) matrix”, Eur. Polym. J., 44, 1686 (2008)
47. K. Wang, Y.Chen, Y. Zhang, “Effects of organoclay platelets on morphology and mechanical properties in PTT/EPDM-g-MA/organoclay ternary nanocomposites”, Polymer, 49, 3301 (2008)
48. B.Wunderlich, “Macromolecular Physics’’, vol. 2, Academic Press, New York (1976)
49. M.Avrami, J. Chen. Phys., 8, 212 (1940)
50. D. Grenier, J. polym. Sct., Polym. Phys. Ed., 18, 1655 (1980)
51. A. Jeziorny, Polymer, 19, 1142 (1978)
52. T. Ozawa, Polymer, 12, 150 (1971)
53. T. X. Liu, Z.S. Mo, S. E. Wang, H. F. Zhang, Polym. Eng. Sci., 37, 568 (1997)
54. H. E. Kissinger, J. Res. Nat’l. Bur. Stand., 57, 217 (1956)
55. L. Mandelkern, “Methods of experimental physics.’’ , Academic Press, NewYork (1980)
56. B.Wunderlich, “Macromolecular Physics’’, vol. 1, Academic Press, New York (1973)
57. A. Ziabicki, “Crystallization of polymers in variable external conditions”, Coll. Polym. Sci., 274, 705 (1996)
58. T. M. Wu, S. F. Hsu, J.Y. Wu, “Nonisothermal crystallization behavior of syndiotactic polystyrene/montmorillonite nanocomposites”, J. Polym. Sci., Part B: Polym. Phys. Ed., 41, 560 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊