|
〔1〕 Sandrine Gautier et al., “Amphiphilic copolymers of ε-caprolactone and γ-substituted ε-caprolactone. Synthesis and functionalization of poly(D,L-lactide) nanoparticles”, Journal of Biomaterials Science Polymer Edition, 14, 63-88, 2003. 〔2〕 Xudong Lou, Christophe Detrembleur, Robert Jérôme, “Novel aliphatic polyesters based on functional cyclic (di)esters”, Macromolecular Rapid Communications, 24, 161-172, 2003 〔3〕 Jun Feng et al., “Non-catalyst synthesis of functionalized biodegradable polycarbonate”, Macromolecular Rapid Communications, 28, 754-758, 2007. 〔4〕 Jaeyoung Lee, Eun Chul Cho, Kilwon Cho, “Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles”, Journal of Controlled Release, 94, 323-335, 2004. 〔5〕 Fang-Chyou Chiu, Chia-Sheng Lai, Ren-Shen Lee, “Synthesis functional poly(carbonate-b-ester) copolymers and micellar characterizations”, Journal of Applied Polymer Science, 106, 283-292, 2007. 〔6〕 Christine Allen et al., “Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone”, Journal of Controlled Release, 63, 275-286, 2000. 〔7〕 So Yeon Kim, Young Moo Lee, “Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(ε-caprolactone) as novel anticancer drug carriers”, Biomaterials, 22, 1697-1704, 2001. 〔8〕 So Yeon Kim et al., “Indomethacin-loaded methoxy poly(ethylene glycol)/poly(ε-caprolactone) diblock copolymeric nanosphere : pharmacokinetic characteristics of indomethacin in the normal Sprague-Dawley rats”, Biomaterials, 22, 2049-2056, 2001. 〔9〕 Hamidreza Montazeri Aliabadi et al., “Micelles of methoxy poly(ethylene oxide)-b-poly(ε-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A”, Journal of Controlled Release, 104, 301-311, 2005. 〔10〕 Hamidreza Montazeri Aliabadi, Dion R. Brocks, Afsaneh Lavasanifar, “Polymeric micelles for the solubilization and delivery of cyclosporine A : pharmacokinetics and biodistribution”, Biomaterials, 26, 7251-7259, 2005. 〔11〕 M. Laird Forrest et al., “In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-b-poly(ε-caprolactone) micelles”, Journal of Controlled Release, 110, 370- 377, 2006. 〔12〕 Bin Shi et al., “Stealth MePEG-PCL micelles: effects of polymer composition on micelle physicochemical characteristics, in vitro drug release, in vivo pharmacokinetics in rats and biodistribution in S180 tumor bearing mice”, Colloid & Polymer Science, 283, 954-967, 2005. 〔13〕 李玉寶,顧寧,魏于全,《奈米生醫材料》,初版,台北市,五南圖書出版,民國95年。 〔14〕 俞耀庭,《生物醫用材料》,初版,台灣,新文京開放出版,民國93年。 〔15〕 Paschalis Alexandridis, Björn Lindman, “Applications of block copolymers”, Amphiphilic Block Copolymer, 1 edition, Netherlands, Elsevier Science, 2000. 〔16〕 Hidetoshi Arimura, Yuichi Ohya, Tatsuro Ouchi, “Formation of core-shell type biodegradable polymeric micelles from amphiphilic poly(aspartic acid)-block-polylactide diblock copolymer”, Biomacromolecules, 6, 720-725, 2005. 〔17〕 Sylvain Caillol et al., “Synthesis and self-assembly properties of peptide-polylactide block copolymers”, Macromolecules, 36, 1118-1124, 2003. 〔18〕 Geneviève Gaucher et al., “Block copolymer micelles:preparation, characterization and application in drug delivery”, Journal of Controlled Release, 109, 169-188, 2005. 〔19〕 Nobuhiro Nishiyama, Kazunori Kataoka, “Nanostructured devices based on block copolymer assemblies for drug delivery:designing structures for enhanced drug function”, Advanced Polymer Science, 193, 67-101, 2006. 〔20〕 Vladimir P. Torchilin, “Structure and design of polymeric surfactant-based drug delivery system”, Journal of Controlled Release, 73, 137-172, 2001. 〔21〕 Zhisheng Gao, Adi Eisenberg, “A model of micellization for block copolymers in solutions”, Macromolecules, 26, 7353-7360, 1993. 〔22〕 Christine Allen, Dusica Maysinger, Adi Eisenberg, “Nano-engineering block copolymer aggregates for drug delivery”, Colloids and Surfaces B : Biointerfaces, 16, 3-27, 1999. 〔23〕 Gérard Riess, “Micellization of block copolymers”, Progress in polymer science, 28, 1107-1170, 2003. 〔24〕 R. Gref et al., “The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres”, Advanced Drug Delivery, 16, 215-233, 1995. 〔25〕 Kumaresh S. Soppimath et al., “Biodegradable polymeric nanoparticles as drug delivery devices”, Journal of Controlled Release, 70, 1-20, 2001. 〔26〕 Glen S. Kwon, Kazunori Kataoka, “Block copolymer micelles as long-circulating drug vehicles”, Advanced Drug Delivery reviews, 16, 295-309, 1995. 〔27〕 Masayuki Yokoyama et al., “Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor”, Journal of controlled release, 50, 79-92, 1998. 〔28〕 Yutaka Tokiwa, Tomoo Suzuki, “Hydrolysis of polyesters by lipases”, Nature, 270, 76-78, 1977. 〔29〕 D. Goldberg, “A review of the biodegrability and utility of poly(caprolactone)”, Journal of environmental polymer degradation, 3, 61-67, 1995. 〔30〕 Lakshmi S. Naira, Cato T. Laurencin, “Biodegradable polymers as biomaterials”, Progress in polymer science, 32, 762-798, 2007. 〔31〕 Snjezana Stolnik, Lisbeth Illum, Stanley Spencer David, “Long circulating microparticulate drug carriers”, Advanced drug delivery reviews, 16, 195-214, 1995. 〔32〕 Bogdan Bogdanov et al., “Synthesis and thermal properties of poly(ethylene glycol)-poly(ε-caprolactone) copolymer”, Polymer, 39, 1631-1636, 1998. 〔33〕 IL Gyun Shin et al., “Methoxy poly(ethylene glycol)/ε-caprolace amphiphilic block copolymeric micelle containing indomethacin. I. preparation and characterization”, Journal of controlled release, 51, 1-11, 1998. 〔34〕 So Yeon Kim et al., “Methoxy poly(ethylene glycol) and ε-caprolace amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours”, Journal of controlled release, 51, 13-22, 1998. 〔35〕 Zhihua Gan et al., “Enzymatic biodegradation of poly(ethylene oxide-b-ε-caprolactone) diblock copolymer and its potential biomedical applications”, Macromolecules, 32, 590-594, 1999. 〔36〕 Christine Allen et al., “Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone”, Journal of Controlled Release, 63, 275-286, 2000. 〔37〕 Kevin Letchford et al., “Synthesis and micellar characterization of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers”, Colloids and Surfaces B: Biointerfaces, 35, 81-91, 2004. 〔38〕 Moon Suk Kim et al., “Preparation of methoxy poly(ethyleneglycol)-block-poly(caprolactone) via activated monomer mechanism and examination of micellar characterization”, Polymer Bulletin, 55, 145-156, 2005. 〔39〕 Chengfei Lu et al., “Aggregation behavior of MPEG-PCL diblock copolymers in aqueous solutions and morphologies of the aggregates”, Journal of polymer science : part B : polymer physics, 44, 3406-3417, 2006. 〔40〕 Abdullah Mahmud et al., “Novel self-associating poly(ethylene oxide)-block-poly(ε-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery”, Macromolecules, 39, 9419-9428, 2006. 〔41〕 Ren-Shen Lee, Chia-Bin Hung, “Synthesis and characterization of amphiphilic block copolymers from poly(ethylene glycol)methyl ether and 4-methyl-ε-caprolactone or 4-phenyl-ε-caprolactone” , Polymer, 48, 2605-2612, 2007. 〔42〕 Mikael Trollsås et al., “Hydrophilic aliphatic polyesters: design, synthesis, and ring-opening polymerization of functional cyclic esters”, Macromolecules, 33, 4619-4627, 2000. 〔43〕 Yu-Cai Wang et al., “Self-Assembled Micelles of Biodegradable Triblock Copolymers Based on Poly(ethyl ethylene phosphate) and Poly(ε-caprolactone) as Drug Carriers”, Biomacromolecules, 9, 388-395, 2008.
|