跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/12 22:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇鈺涵
研究生(外文):Yu Han Su
論文名稱:以脂質奈米微粒作為局部皮膚傳輸系統及注射劑之物理化學性質及藥物釋放之研究
論文名稱(外文):The physicochemical characterization and drug delivery of lipid nanoparticles for topical and injectable dosage forms
指導教授:方嘉佑
指導教授(外文):J. Y. Fang
學位類別:碩士
校院名稱:長庚大學
系所名稱:天然藥物研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:125
中文關鍵詞:固態脂質奈米微粒奈米脂質結構載體psoralenstryptanthrin
外文關鍵詞:solid lipid nanoparticlesnanostructured lipid carrierspsoralenstryptanthrin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:794
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
固態脂質奈米微粒 (SLN) 與奈米結構脂質載體 (NLC) 為新一代奈米微粒,並且是受到主要關注的新膠體藥物載體。本篇論文有二個研究目的。第一個是以 psoralens 為模式藥物,以 SLN 和 NLC 作為藥物載體,期待能發展促進 psoralens 穿透並且具有控制釋放能力的傳輸系統;第二個目的為開發能持續性釋放 tryptanthrin 並且有效毒殺細胞之傳輸系統。在第一部分局部投與 psoralens 的實驗中,SLN 與 NLC 平均顆粒粒徑分別為 ~300 nm和 ~200 nm 大小的奈米粒子,藉由測量載體的黏度、極性以及示差熱量掃描分析 (DSC) 等實驗方法,觀察 SLN 與 NLC 之物理化學性質。以 Tween 80 和大豆磷脂質 (SPC) 作為乳化劑的 NLC-Tw 除外,其他的奈米系統都屬於牛頓流體。依據 DSC 熱量分析圖中,發現了含有角鯊烯的 NLC,由於液體油脂核心脂質非完美晶型結構造成粒徑縮小,使得 Precirol 熔點由原來 58 ℃ 降低至 55 ℃。以治療乾癬的三種 psoralen 的衍生物包覆於 SLN、NLC評估其穿透的能力,結果顯示 psoralens 穿透皮膚的能力高至低為 8-methoxypsoralen (8-MOP) > 5-methoxypsoralen (5-MOP) > 4,5’,8-trimethylpsoralen (TMP)。載體 NLC 既能促進藥物的穿透並且持續的釋放藥物,其中 NLC-Tw 運載 8-MOP 和乳劑相比,提高了 2.4 倍的穿透速率,遠勝過於傳統的乳劑。實驗亦透過重複剝除膠帶方式,形成表皮層過度增生類似乾癬病灶的皮膚作為穿透障壁,透過動物模型能用以預測載體應用在疾病的皮膚時的穿透能力。而第二部分以發展 tryptanthrin 之注射劑為其目的,結果發現 NLC 平均顆粒粒徑小於 SLN,並且藥物分配至 NLC 含量多,提高了 NLC 的釋放 tryptanthrin 的速率。NLC 系統能持續性的釋放藥物並且不會造成突釋的現象,以混合 squalene 與 Compritol 的 NLC-C 釋放率最高,毒殺效果最好。共軛焦雷射光掃瞄顯微鏡影像圖証實了,癌細胞能將處方胞飲入細胞質而毒殺細胞。這些結果顯示 SLN 以及 NLC 是很有潛力的藥物載體,未來或許能作為局部投與皮膚傳輸系統或者注射劑方面藥物之應用。
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) are the new generation of nanoparticulate active substance vehicles and are attracting major attention as novel colloidal drug carriers. There are two purposes of this study. The first, we develop SLN and NLC, the nanoparticulate lipid based drug carriers, with increased skin permeation and controlled release properties for psoralens. The second, we investigate sustained release properties for tryptanthrin of nanoparticles and cytotoxicity of its tryptanthrin delivery system. For topical psoralen delivery (part I), SLN and NLC showed mean particle size of ~300 and ~200 nm respectively. Viscosity, polarity, and differential scanning calorimetry (DSC) studies were performed to characterize physicochemical properties of SLN and NLC. The viscosity of all nanoparticulate systems exhibited Newtonian behavior except NLC with Tween 80 and soybean phospholipids as the emulsfiers (NLC-Tw). According to the DSC thermograms, the melting peak of Precirol was shifted from 58 °C to 55 °C after incorporating squalene into the solid lipid cores (NLC) which suggests the defects in the crystalline lattice of the lipid cores and the smaller particle size. Three psoralen derivatives for psoriasis treatments were loaded in SLN and NLC for examining their skin permeation. The permeability of psoralens increased in the order of 8-methoxypsoralen (8-MOP) > 5-methoxypsoralen (5-MOP) > 4,5’,8-trimethylpsoralen (TMP). Both enhanced permeation and sustained release of psoralen delivery could be achieved by NLC. The in vitro permeation showed that NLC-Tw increased the 8-MOP flux 2.4 times over conventional emulsion. The hyperproliferative or psoriasis-like skin reproduced by repeated abrogation was also used as a permeation barrier. The animal model can predict the skin targeting ability of a drug applied on a disordered skin. For injection use tryptanthrin delivery (part II), NLC showed mean particle size lower and higher partition coefficient than SLN, thus increased the tryptanthrin release rate of NLC delivery system. NLC supplied sustained release of tryptanthrin delivery without burst release. Especially NLC-C which mixed squalene and Compritol as lipid materials showed highest released rate and best cytotoxicity effect. The images of confocal laser scanning microscopy confirmed that drug internalization into cell could be enhanced by the endocytosis of NLC. These results demonstrated that SLN and NLC can potentially be exploited as drug carrier systems for topical and intravenous use in the future.
總目錄
誌謝............................................................................................................................... I
中文摘要......................................................................................................................II
英文摘要.................................................................................................................... III
總目錄..........................................................................................................................V
表目錄..........................................................................................................................X
圖目錄........................................................................................................................ XI
縮寫表......................................................................................................................XIV
引言...............................................................................................................................1
第壹章 文獻回顧.......................................................................................................2
第一節 固態脂質奈米微粒...................................................................................2
1.1 固態脂質奈米微粒的組成..........................................................................2
1.2 奈米結構脂質載體的類型..........................................................................6
1.2.1 缺陷型奈米結構脂質載體...................................................................6
1.2.2 無定形型奈米結構脂質載體...............................................................6
1.2.3 複合型奈米結構脂質載體...................................................................7
1.3 固態脂質奈米微粒與奈米結構脂質載體的應用......................................7
第二節 藥物投與途徑...........................................................................................8
2.1 皮膚的簡介..................................................................................................8
2.2 藥物穿透皮膚的途徑................................................................................10
第貳章 乾癬之經皮吸收用藥的文獻回顧............................................................. 11
第一節 乾癬的簡介.............................................................................................11
第二節 乾癬的局部治療方式.............................................................................14
2.1 煤焦油........................................................................................................14
2.2 恩酚............................................................................................................15
2.3 甲氨蝶呤....................................................................................................16
2.4 類固醇類藥物............................................................................................17
2.4.1 Clobetasol propionate........................................................................18
2.4.2 Betamethasone....................................................................................19
2.4.3 Halobetasol propionate......................................................................21
2.5 維他命 D3 類似物....................................................................................21
2.5.1 Calcipotriol .........................................................................................22
2.5.2 Tacalcitol .............................................................................................23
2.5.3 Maxacalcitol........................................................................................23
2.5.4 Calcitriol .............................................................................................23
2.6 維他命 A 酸類藥物..................................................................................24
2.7 中草藥青黛的局部療法............................................................................26
第三節 光療法.....................................................................................................26
3.1 紫外線 B 光照射療法..............................................................................26
3.2 Psoralens 合併紫外線 A 光照射療法...................................................27
3.3 光動力學療法............................................................................................28
3.3.1 5-Aminolaevulinic acid ......................................................................28
3.3.2 孟加拉玫瑰素.....................................................................................30
第四節 合併療法.................................................................................................31
第五節 模式藥物.................................................................................................34
5.1 Psoralens ....................................................................................................34
5.2 Tryptanthrin..............................................................................................35
第六節 研究動機與目的.....................................................................................37
第參章 實驗材料與方法.........................................................................................38
第一節 實驗材料.................................................................................................38
1.1 試劑與醫材................................................................................................38
1.2 實驗儀器....................................................................................................40
第二節 Psoralens 脂質奈米微粒實驗方法.......................................................41
2.1 藥物的水中飽和溶解度試驗....................................................................41
2.2 容積因數試驗............................................................................................41
2.3 脂乳劑的製備方法....................................................................................42
2.4 固體脂質奈米微粒製備方法....................................................................42
2.5 奈米結構脂質載體製備方法....................................................................42
2.6 劑型的基本性質試驗................................................................................43
2.6.1 粒徑測定.............................................................................................43
2.6.2 表面電位測定.....................................................................................43
2.7 示差熱量掃描分析儀................................................................................43
2.8 劑型的疏水性實驗....................................................................................44
2.9 劑型之黏度與剪切率之關係....................................................................44
2.10 體外實驗..................................................................................................45
2.10.1 動物皮膚的取得方式.......................................................................45
2.10.2 建立乾癬病灶動物模式...................................................................45
2.10.3 體外實驗裝置...................................................................................45
2.10.4 體外穿透實驗步驟...........................................................................46
2.11 體外釋放實驗步驟...................................................................................46
2.11.1 Psoralens 飽和溶解度體外穿透實驗.............................................47
2.11.2 Psoralens 過飽和溶解度體外穿透實驗.........................................47
2.12 表皮增生的皮膚組織切片檢體製備方法..............................................47
2.12.1 皮膚組織檢體製備...........................................................................47
2.12.2 Mayer hematoxylin and Eosin stains 染色法...............................47
2.13 Psoralens 之 HPLC 分析條件.............................................................48
2.14 統計方法..................................................................................................48
第三節 Tryptanthrin 脂質奈米微粒實驗方法.................................................49
3.1 分配係數試驗............................................................................................49
3.2 脂乳劑製備方法........................................................................................49
3.3 固態脂質奈米微粒製備方法....................................................................50
3.4 奈米結構脂質載體製備方法....................................................................50
3.5 劑型的基本性質試驗................................................................................50
3.6 體外釋放實驗............................................................................................50
3.7 細胞實驗....................................................................................................50
3.7.1 細胞培養.............................................................................................50
3.7.2 細胞檢量線.........................................................................................51
3.7.3 Tryptanthrin 細胞毒性實驗..............................................................51
3.8 共軛焦雷射掃描顯微鏡............................................................................52
3.9 Tryptanthrin 之HPLC 分析條件...........................................................52
3.10 統計方法..................................................................................................52
第肆章 實驗結果與討論.........................................................................................53
第一節 Psoralens 類奈米微粒之實驗結果.......................................................53
1.1 劑型的基本性質........................................................................................53
1.2 示差熱量掃描分析儀................................................................................55
1.3 劑型的黏度檢測........................................................................................57
1.4 劑型的疏水性試驗....................................................................................59
1.5 Psoralens 的容積因數..............................................................................60
1.6 Psoralens 之體外實驗..............................................................................60
1.7 Psoralens 類脂質奈米微粒之綜合討論..................................................66
第二節 Tryptanthrin 奈米微粒之實驗結果.....................................................71
2.1 劑性基本性質............................................................................................71
2.2 Tryptanthrin 分配係數............................................................................73
2.3 Tryptanthrin 之釋放................................................................................74
2.4 Tryptanthrin 細胞毒性實驗....................................................................75
2.5 共軛焦雷射光掃瞄顯微鏡觀察乳癌細胞攝入劑型的情形....................78
2.6 Tryptanthrin 脂質奈米粒子之綜合討論................................................81
第伍章 結論.............................................................................................................85
第陸章 參考文獻.....................................................................................................86



表目錄
表一 製備固態脂質奈米微粒常用的脂質.................................................................3
表二 製備固態脂質奈米微粒常用的乳化劑.............................................................4
表三 乾癬的局部治療方式.......................................................................................33
表四 模式藥物化學結構式.......................................................................................36
表五 Psoralens 之高效能液相層析儀移動相比例.................................................48
表六 觀察 SLN、NLC 以及脂乳劑粒徑與表面電位之變化...............................54
表七 Psoralens 的容積因數.....................................................................................60
表八 Psoralens 容積因數與溶解度表現之綜合比較表.........................................68
表九 不同固態脂質 Compritol 與 Precirol 組成之 SLN、NLC 之奈米粒子粒
徑與表面電位比較表.....................................................................................72
表十 為處方 SLN、NLC 以及脂乳劑中 tryptanthrin 的油水分配係數..........73

圖目錄
圖一 儲存期間 SLN 的內部脂質結構轉變結構而排擠藥物的示意圖.................5
圖二 奈米結構脂質載體三種類型.............................................................................6
圖三 典型人體皮膚構造縱切面圖.............................................................................9
圖四 藥物穿透角質層的三種途徑...........................................................................10
圖五 典型乾癬病灶影像圖.......................................................................................12
圖六 (A) 正常皮膚與 (B) 乾癬病灶皮膚組織切片圖..........................................13
圖七 Anthralin 結構式............................................................................................15
圖八 Methotrexate 的結構圖..................................................................................16
圖九 Clobetasol propionate 結構圖........................................................................18
圖十 Hydrocortisone 結構圖..................................................................................19
圖十一 Triamcinolone 結構圖................................................................................20
圖十二 Betamethasone 結構圖...............................................................................20
圖十三 Betamethasone dipropionate 結構圖........................................................20
圖十四 Betamethasone valerate 結構圖................................................................20
圖十五 Halobetasol propionate 結構圖..................................................................21
圖十六 Calcipotriol 結構圖....................................................................................22
圖十七 Tacalcitol 結構圖........................................................................................23
圖十八 Maxacalcitol 結構圖...................................................................................24
圖十九 Calcitriol 結構圖.........................................................................................24
圖二十 Tazarotene 代謝圖......................................................................................25
圖二十一 Psoralens 作用的機轉圖.........................................................................27
圖二十二 (A) Protoporphyrin IX (B) 5-Aminolaevulinic acid 結構圖................29
圖二十三 Rose Bengal 結構圖................................................................................30
圖二十四 直立式擴散裝置構造圖...........................................................................46
圖二十五 單純 Precirol、劑型 SLN、物理混合物以及含藥的 SLN 中 Precirol
熔點之 DSC 圖譜..................................................................................55
圖二十六 NLC-PF 劑型、物理混合物與含藥的劑型之 Precirol 熔點 DSC 圖譜..............................................................................................................56
圖二十七 NLC-Tw 劑型及其物理混合物與含藥的劑型中 Precirol 熔點之 DSC 圖譜................................................................................................56
圖二十八 不同系統之流變性質曲線圖 (A) 剪切應力與剪切率關係圖 (B) 黏度與剪切率關係圖......................................................................................58
圖二十九 以尼羅河紅螢光強度判斷 SLN、NLC-PF、NLC-Tw 與脂乳劑系統之疏水性的差異..........................................................................................59
圖三十 以正常裸小鼠皮膚作為穿透障壁 SLN、NLC-PF、NLC-Tw 與脂乳劑 之 8-MOP 經時累積穿透量曲線比較圖.............................................61
圖三十一 以正常裸小鼠皮作為穿透障壁之 8-MOP、5-MOP 以及 TMP 於不 同奈米系統中穿透速率柱狀比較圖......................................................62
圖三十二 顯微鏡影像下觀察皮膚組織縱切面比較圖 (A) 未處理正常裸小鼠皮膚組織切面圖 (B) 膠帶撕除後具乾癬病灶的裸小鼠皮膚組織切面圖..................................................................................................................63
圖三十三 正常裸小鼠皮膚和乾癬病灶裸小鼠皮膚作為穿透障壁之SLN、NLC-PF、NLC-Tw 與脂乳劑 8-MOP 穿透速率柱狀比較圖.........64
圖三十四 比較 SLN、NLC-PF、NLC-Tw 與脂乳劑以及水溶液控制組之 8-MOP 釋放百分率曲線比較圖...........................................................65
圖三十五 處方 SLN、NLC 以及脂乳劑於人工膜釋放實驗中 tryptanthrin 之經時累積釋放趨勢比較圖......................................................................74
圖三十六 觀察投與不同劑量的處方 SLN、NLC 與脂乳劑之乳癌細胞於 (A) 24小時 (B) 48 小時之細胞存活率柱狀比較圖.......................................76
圖三十七 觀察不同時間點投與 tryptanthrin (A) 5.75 μM (B) 11.5 μM 兩種濃度的 SLN、NLC 以及脂乳劑之乳癌細胞存活率柱狀比較圖.........77
圖三十八 以共軛雷射光掃瞄顯微鏡觀察乳癌細胞投與含有 SB (5.2 μM) 處方NLC-C 與水溶液控制組 24 小時後細胞攝入情形圖.......................79
圖三十九 以共軛雷射光掃瞄顯微鏡觀察乳癌細胞投與含有 SB (10.4 μM) 處方NLC-C 與水溶液控制組 24 小時後細胞攝入情形圖.......................80
圖四十 藥物聚集於 SLN 脂質外殼層之示意圖...............................................82
Al-Suwaidan, S.N., Feldman, S.R., 2000. Clearance is not a realistic expection of psoiasis treatment. J. Am. Acad. Dermatol. 42, 796-802.
Alvarez-Figueroa, M.J., Delgado-Charro, M.B., Blanco-Mendez, J., 2001. Passive and iontophoretic transdermal penetration of methotrexate. Int. J. Pharm. 212, 101-107.
Alvarez-Figueroa, M.J., Blanco-Mendez, J., 2001. Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int. J. Pharm. 215, 57-65.
Asbill, C.S., El-Kattan, A.F., Michniak, B., 2000. Enhancement of transdermal drug delivery: chemical and physical approaches. Crit. Rev. Ther. Drug Carrier Syst. 17, 621-658.
Auner, B.G., Valenta, C., Hadgraft, J., 2003. Influence of lipophilic counter-ions in combination with phloretin and 6-ketocholestanol on the skin permeation of 5-aminolevulinic acid. Int. J. Pharm. 255, 109-116.
Barker, J.N., 1991. The pathophysiology of psoriasis. Lancet 338, 227-230.
Barker, J.N., Ashton, R.E., Marks, R., Harris, R.I., Berth-Jones, J., 1999. Topical maxacalcitol for the treatment of psoriasis vulgaris: a placebo-controlled, double-blind, dose-finding study with active comparator. Br. J. Dermatol. 141, 274-278.
Baroli, B., López-Quintela, M.A., Delgado-Charro, M.B., Fadda, A.M., Blanco-Méndez, J., 2000. Microemulsions for topical delivery of 8-methoxsalen. J. Control. Release 69, 209-218.
Behrens, S., Grundmann-Kollmann, M., Schiener, R., Peter, R.U., Kerscher, M., 2000. Combination phototherapy of psoriasis with narrow-band UVB irradiation and topical tazarotene gel. J. Am. Acad. Dermatol. 42, 493-495.
Ben-Shabat, S., Benisty, R., Wormser, U., Sintov, A.C., 2005. Vitamin D3-based conjugates for topical treatment of psoriasis: synthesis, antiproliferative activity, and cutaneous penetration studies. Pharm. Res. 22, 50-57.
Bhalerao, J., Bowcock, A.M., 1998. The genetics of psoriasis: a complex disorder of the skin and immune system. Hum. Mol. Genet. 7, 1537-1545.
Bhattacharjee, A.K., Skanchy, D.J., Jennings, B., Hudson, T.H., Brendle, J.J., Werbovetz, K.A., 2002. Analysis of stereoelectronic properties, mechanism of action and pharmacophore of synthetic indolo[2,1-b]quinazoline-6,12-dione derivatives in relation to antileishmanial activity using quantum chemical, cyclic voltammetry and 3-D-QSAR CATALYST procedures. Bioorg. Med. Chem. 10, 1979-1989.
Blum, G., Yawalkar, S., 1991. A comparative, multicenter, double blind trial of 0.05% halobetasol propionate ointment and 0.1% betamethasone valerate ointment in the treatment of patients with chronic, localized plaque psoriasis. J. Am. Acad. Dermatol. 25, 1153-1156.
Boehncke, W.H., Sterry, W., Kaufmann, R., 1994. Treatment of psoriasis by topical photodynamic therapy with polychromatic light. Lancet 343, 801.
Boehncke, W.H., Elshorst-Schmidt, T., Kaufmann, R., 2000. Systemic photodynamic therapy is a safe and effective treatment for psoriasis. Arch. Dermatol. 136, 271-272.
Bowman, P.H., Maloney, J.E., Koo, J.Y., 2002. Combination of calcipotriene (Dovonex®) ointment and tazarotene (Tazorac®) gel versus clobetasol ointment in the treatment of plaque psoriasis: a pilot study. J. Am. Acad. Dermatol. 46,907-913.
Bourke, J.F., Berth-Jones, J., Hutchinson, P.E., 1993. Occlusion enhances the efficacy of topical calcipotriol in the treatment of psoriasis vulgaris. Clin. Exp. Dermatol. 18, 504-506.
Bouwstra, J.A., Honeywell-Nguyen, P.L., 2002. Skin structure and mode of action of vesicles. Adv. Drug Deliv. Rev. 54, S41-S55.
Buhse, L., Kolinski, R., Westenberger, B., Wokovich, A., Spencer, J., Chen, C.W., Turujman, S., Gautam-Basak, M., Kang, G.J., Kibbe, A., Heintzelman, B., Wolfgang, E., 2005. Topical drug classification. Int. J. Pharm. 295, 101-112.
Bunjes, H., Koch, M.H., Westesen, K., 2003. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J. Pharm. Sci. 92, 1509-1520.
Castelli, F., Puglia, C., Sarpietro, M.G., Rizza, L., Bonina, F., 2005. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. Int. J. Pharm. 304, 231-238.
Cavalli, R., Caputo, O., Gasco, M.R., 2000. Preparation and characterization of solid lipid nanospheres containing paclitaxel. Eur. J. Pharm. Sci. 10, 305-309.
Cavalli, R., Gasco, M.R., Chetoni, P., Burgalassi, S., Saettone, M.F., 2002. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int. J. Pharm. 238, 241-245.
Cevc, G., Schatzlein, A., Richardsen, H., 2002. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta 1564, 21-30.
Cevc, G., 2004. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 56, 675-711.
Chen, H., Chang, X., Du, D., Liu, W., Liu, J., Weng, T., Yang, Y., Xu, H., Yang, X., 2006. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J. Control. Release 110, 296-306.
Champion, R.H., Burton, J.L., Burns, D.A., Breathnach, S.M., Griffiths, W.A.D., Wilkinson, J.D., 1998. Topical therapy: tars. Textbook of Dermatology. Oxford, UK: Blackwell Science.
Dalla Via, L., Mammi, S., Uriarte, E., Santana, L., Lampronti, I., Gambari, R., Gia, O., 2006. New furan side tetracyclic allopsoralen derivatives: synthesis and photobiological evaluation. J. Med. Chem. 49, 4317-4326.
Danielsen, A.G., Heidenheim, M., Wulf, H.C., 2001. Crude coal tar treatment every day versus every other day for plaque psoriasis. Acta Derm. Venereol. 81, 221-222.
De Rosa, F.S., Marchetti, J.M., Thomazini J.A., Tedesco A.C., Bentley M.V., 2000. A vehicle for photodynamic therapy of skin cancer: influence of dimethylsulphoxide on 5-aminolevulinic acid in vitro cutaneous permeation and in vivo protoporphyrin IX accumulation determined by confocal microscopy. J. Control. Release 65, 359-366.
Del Rosso Do, J.Q., 2006. Combination topical therapy for the treatment of psoriasis. J. Drugs Dermatol.5, 232-234.
Demerjian, M., Mao, M.Q., Choi, E.H., Brown, B.E., Crumrine, D., Chang, S., Mauro, T., Elias, P.M., Feingold, K.R., 2006. Topical treatment with thiazolidinediones, activators of peroxisome proliferators-activated receptor-γ, normalizes epidermal homeostasis in a murine hyperproliferative disease model. Exp. Dermatol. 15, 154-160.
Dickson, M., Gagnon, J.P., 2004. Key factors in the rising cost of new drug discovery and development. Nat. Rev. Drug Discov. 3, 417-429.
Driscoll, D.F., 2006. Lipid injectable emulsions: pharmacopeial and safety issues. Pharm. Res. 23, 1959-1969.
Doh, H.J., Cho, W.J., Yong, C.S., Choi, H.G., Kim, J.S., Lee, C.H., Kim, D.D., 2003. Synthesis and evaluation of Ketorolac ester prodrugs for transepidermal delivery. J. Pharm. Sci. 92, 1008-1017.
dos Santos, D.J., Eriksson, L.A., 2006. Permeability of psoralen derivatives in lipid membranes. Biophys. J. 91, 2464-2474.
Douglas, W.S., Poulin, Y., Decroix, J., Ortonne, J.P., Mrowietz, U., Gulliver, W., Krogstad, A.L., Larsen, F.G., Iglesias, L., Buckley, C., Bibby, A.J., 2002. A new calcipotriol/betamethasone formulation with rapid onset of action was superior to monotherapy with betamethasone dipropionate or calcipotriol in psoriasis vulgaris. Acta Derm. Venereol. 82, 131-135.
Duvic, M., 1990. Immunology of AIDS related to psoriasis. J. Invest. Dermatol. 95, 38S-40S.
Eads, T.J., Saunders, W.B., 2001. Micellaneous topical agents in comprehensive dermatologic drug therapy. In: Comprehensive Dermatologic Drug Therapy. Wolverton S., editor. Philadelphia
Esgleyes-Ribot, T., Chandraratna, R.A., Lew-Kaya, D.A., Sefton, J., Duvic, M., 1994. Response of psoriasis to a new topical retinoid, AGN 190168. J. Am. Acad. Dermatol. 30, 581-590.
Esposito, E., Fantin, M., Marti, M., Drechsler, M., Paccamiccio, L., Mariani, P., Sivieri, E., Lain, F., Menegatti, E., Morari, M., Cortesi, R., 2008. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm. Res. 25, 1521-1530.
Fang, J.Y., Lee, W.R., Shen, S.C., Fang, Y.P., Hu, C.H., 2004a. Enhancement of topical 5-aminolaevulinic acid delivery by erbium:YAG laser and microdermabrasion: a comparison with iontophoresis and electroporation. Br. J. Dermatol. 151, 132-140.
Fang, J.Y., Leu, Y.L., Chang, C.C., Lin, C.H., Tsai, Y.H., 2004b. Lipid nano/submicron emulsions as vehicles for topical flurbiprofen delivery. Drug Deliv. 11, 97-105.
Fang, J.Y., Hwang, T.L., Huang, Y.L., 2006. Liposomes as vehicles for enhancing drug delivery via skin routes. Curr. Nanosci. 2, 55-70.
Fang, J.Y., Leu, Y.L., 2006. Prodrug strategy for enhancing drug delivery via skin. Curr. Drug Discov. Technol. 3, 211-224.
Fogh, K., Kragballe, K., 2004. New vitamin D analogs in psoriasis. Curr. Drug Targets Inflamm. Allergy 3, 199-204.
Freitas, C., Müller, R.H., 1999. Stability determination of solid lipid nanoparticles (SLN) in aqueous dispersion after addition of electrolyte. J. microencapsul. 16, 59-71.
Fresta, M, Puglish, G. 1997. Corticosteroid dermal delivery with skin-lipid liposomes. J. Control. Release 44, 141-151.
Fritsch, C., Verwohlt, B., Bolsen, K., Ruzicka, T., Goerz, G., 1996. Influence of topical photodynamic therapy with 5-aminolevulinic acid on porphyrin metabolism. Arch. Dermatol. Res. 288, 517-521.
Gasparro, F.P., Liao, B., Foley, P.J., Wang, X.M., McNiff, J.M., 1998. Psoralen photochemotherapy, clinical efficacy, and photomutagenicity: the role of molecular epidemiology in minimizing risks. Environ. Mol. Mutagen. 31, 105-112.
Gelfand, J.M., Troxel, A.B., Lewis, J.D., Kurd, S.K., Shin, D.B., Wang, X., Margolis, D.J., Strom, B.L., 2007. The risk of mortality in patients with psoriasis: results from a population-based study. Arch. Dermatol. 143, 1493-1499.
Godin, B., Touitou, E., 2004. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J. Control. Release 94, 365-379.
Goldberg, B., Hartdegen, R., Presbury, D., Smith, E.H., Yawalkar, S., 1991. A double-blind, multicenter comparison of 0.05% halobetasol propionate ointment and 0.05% clobetasol propionate ointment in patients with chronic, localized plaque psoriasis. J. Am. Acad. Dermatol. 25, 1145-1148.
Gomes, A.J., Faustino, A.S., Lunardi, C.N., Lunardi, L.O., Machado, A.E., 2007. Evaluation of nanoparticles loaded with benzopsoralen in rat peritoneal exudate cells. Int. J. Pharm. 332, 153-160.
Goodfield, M., Kownacki, S., Berth-Jones, J., 2004. Double-blind, randomised, multicentre, parallel group study comparing a 1% coal tar preparation (Exorex®) with a 5% coal tar preparation (Alphosyl®) in chronic plaque psoriasis. J. Dermatolog. Treat. 15, 14-22.
Gorham, H., 1980. Treatment of psoriatic arthropathy by PUVA. Physiotherapy 66, 40.
Gottlieb, A.B., Ford, R.O., Spellman, M.C., 2003. The efficacy and tolerability of clobetasol propionate foam 0.05% in the treatment of mild to moderate plaque-type psoriasis of nonscalp regions. J Cutan Med Surg 7, 185-192.
Grundmann-Kollmann, M., Behrens, S., Peter, R.U., Kerscher, M., 1999. Treatment of severe and recalcitrant dermatoses of the palms and soles with PUVA-bath versus PUVA-cream therapy. Photodermatol. Photoimmunol. Photomed. 15, 87-89.
Gupta, G., Long, J., Tillman, D.M., 1999. The efficacy of narrowband ultraviolet B phototherapy in psoriasis using objective and subjective outcome measures. Br. J. Dermatol. 140, 887-890.
Hamdani, J., Moës, A. J., Amighi, K., 2003. Physical and thermal haracterisation of Precirol® and Compritol® as lipophilic glycerides used for the preparation of controlled-release matrix pellets. Int. J. Pharm. 260, 47-57.
Hansen, A.M., Poulsen, O.M., Menne, T., 1993. Longitudinal study of excretion of metabolites of polycyclic aromatic hydrocarbons in urine from two psoriatic patients. Acta Derm. Venereol. 73, 188-190.
Hashimoto, T., Aga, H., Chaen, H., Fukuda, S., Kurimoto, M., 1999. Isolation and identification of anti-Helicobacter pylori compounds from Polygonum tinctorium Lour. Nat. Med. 53, 27-31.
Henning, D., Dietmar, B., Manhias, H., Quantitative determination of the dual COX-2/5-LOX irhibitor tryptanthrin in isatia tinctoria by ESI-LC-MS. 2002, Planta Med. 68, 152-157.
Hu, F.Q., Jiang, S.P., Du, Y.Z., Yuan, H., Ye, Y.Q., Zeng, S., 2005. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloid Surf. B Biointerfaces 45, 167-173.
Hu, F.Q., Jiang, S.P., Du, Y.Z., Yuan, H., Ye, Y.Q., Zeng, S., 2006. Preparation and characteristics of monostearin nanostructured lipid carriers. Int. J. Pharm. 314, 83-89.
Hu, F.Q., Zhang, Y., Du, Z.Y., Yuan, H., 2008. Nimodipine loaded lipid nanospheres prepared by solvent diffusion method in a drug saturated aqueous system. Int. J. Pharm. 348, 146-152.
Huang, X., Tanojo, H., Lenn, J., Cuesico, C., Deng, H., Impact of vehicle on clobetasol propionate skin permeation and drug distribution in vitro. 2004. Poster presented at: American Academy of Dermatology.
Ibbotson, S.H., 2002. Topical 5-aminolaevulinic acid photodynamic therapy for the treatment of skin conditions other than non-melanoma skin cancer. Br. J. Dermatol. 146, 178-188.
Ishihara, T., Kohno, K., Ushio, S., Iwaki, K., Ikeda, M., Kurimoto, M., 2000. Tryptanthrin inhibits nitric oxide and prostaglandin E(2) synthesis by murine macrophages. Eur. J. Pharmacol. 407, 197-204.
Jao, C.W., Lin, W.C., Wu, Y.T., Wu, P.L., 2008. Isolation, structure elucidation, and synthesis of cytotoxic tryptanthrin analogues from phaius mishmensis. J. Nat. Prod. (In press)
Jannin, V., Pochard, E., Chambin, O., 2006. Influence of poloxamers on the dissolution performance and stability of controlled-release formulations containing Precirol ATO 5. Int. J. Pharm. 309, 6-15.
Jenning, V., Thűnemann, A.F., Gohla, S.H., 2000a. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm. 199, 167-177.
Jenning, V., Schäfer-Korting, M., Gohla, S., 2000b. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J. Control. Release 66, 115-126.
Jenning, V., Gohla, S.H., 2001. Encapsulation of retinoids in solid lipid nanoparticles (SLN). J. Microencapsul. 18, 149-158.
Jores, K., Haberland, A., Wartewig, S., Mäder, K., Mehnert, W., 2005. Solid lipid nanoparticles (SLN) and oil-loaded SLN studied by spectrofluorometry and Raman spectroscopy. Pharm. Res. 22, 1887-1897.
Kaestli, L.Z., Wasilewski-Rasca, A.F., Bonnabry, P., Vogt-Ferrier, N., 2008. Use of transdermal drug formulations in the elderly. Drugs Aging 25, 269-280.
Kataoka, M., Hirata, K., Kunikata, T., Ushio, S., Iwaki, K., Ohashi, K., Ikeda, M., Kurimoto, M., 2001. Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. J. Gastroenterol. 36, 5-9.
Kaur, I., Saraswat, A., Kumar, B., 2001. Comparison of calcipotriol and coal tar in conjunction with sun exposure in chronic plaque psoriasis: a pilot study. J. Dermatol. 28, 448-450.
Kim, B.D., Na, K., Choi, H.K., 2005. Preparation and characterization of solid lipid nanoparticles (SLN) made of cacao butter and curdlan. Eur. J. Pharm. Sci. 24, 199-205.
Kimoto, T., Hino, K., Koya-Miyata, S., Yamamoto, Y., Takeuchi, M., Nishizaki, Y., Micallef, M.J., Ushio, S., Iwaki. K., Ikeda, M., Kurimoto, M., 2001. Cell differentiation and apoptosis of monocytic and promyelocytic leukemia cells (U-937 and HL-60) by tryptanthrin, an active ingredient of Polygonum tinctorium Lour. Pathol. Int. 51, 315-325.
Kist, J.M., Van Voorhees, A.S., 2005. Narrowband ultraviolet B therapy for psoriasis and other skin disorders. Adv. Dermatol. 21, 235-250.
Klaber, M.R., Hutchinson, P.E., Pedvis-Leftick, A., Kragballe, K., Reunala, T.L., Van de Kerkhof, P.C., Johnsson, M.K., Molin, L., Corbett, M.S., Downess, N., 1994. Comparative effects of calcipotriol solution (50 micrograms/ml) and betamethasone 17-valerate solution (1 mg/ml) in the treatment of scalp psoriasis. Br. J. Dermatol. 131, 678-683.
Kogan, A., Garti, N., 2006. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 123-126, 369-385.
Koo, J., Lebwohl, M., 1999. Duration of remission of psoriasis therapies. J. Am. Acad. Dermatol. 41, 51-59.
Korting, H.C., Zienicke, H., Schafer-Korting, M., Braun-Falco, O., 1990. Liposome encapsulation improves efficacy of betamethasone dipropionate in atopic eczema but not in psoriasis vulgaris. Eur. J. Clin. Pharmacol. 39, 349-351.
Kowalzick, L., 2001. Clinical experience with topical calcitriol (1,25-dihydroxyvitamin D3) in psoriasis. Br. J. Dermatol. 144, 21-25.
Lebwohl, M., Ast, E., Callen, J.P., Cullen, S.I., Hong, S.R., Kulp-Shorten, C.L., Lowe, N.J., Phillips, T.J., Rosen, T., Wolf, D.I., Quell, J.M., Sefton, J., Lue, J.C., Gibson, J.R., Chandraratna, R.A., 1998. Once-daily tazarotene gel versus twice-daily fluocinonide cream in the treatment of plaque psoriasis. J. Am. Acad. Dermatol. 38, 705-711.
Lebwohl, M., 2000. Advances in psoriasis therapy. Dermatol. Clin. 18, 13-19.
Leon, A., Nguyen, A., Letsinger, J., Koo, J., 2007. An attempt to formulate an evidence-based strategy in the management of moderate-to-severe psoriasis: a review of the efficacy and safety of biologics and prebiologic options. Expert Opin. Pharmacother. 8, 617-632.
Liau, B.C., Jong, T.T., Lee, M.R., Chen, S.S., 2007. LC-APCI-MS method for detection and analysis of tryptanthrin, indigo, and indirubin in daqingye and anlangen. J. Pharm. Biomed. Anal. 43, 346-351.
Lieb, S., Szeimies, R.M., Lee, G., 2002. Self-adhesive thin films for topical delivery of 5-aminolevulinic acid. Eur. J. Pharm. Biopharm. 53, 99-106.
Lin, Y.K, Wong, W.R, Su Pang, J.H. 2007a. Successful treatment of recalcitrant psoriasis with Indigo naturalis ointment. Clin. Exp. Dermatol. 32, 99-100.
Lin, Y.K., Wong, W.R., Chang, Y.C., Chang, C.J., Tsay, P.K., Chang, S.C., Pang, J.H., 2007b. The efficacy and safety of topically applied indigo naturalis ointment in patients with plaque-type psoriasis. Dermatology 214, 155-161.
Linden, K.G., Weinstein, G.D., 1999. Psoriasis: current perspectives with an emphasis on treatment. Am. J. Med. 107, 595-605.
Lipp, R., Laurent, H., Gunther, C., Riedl, J., Esperling, P., Tauber, U., 1998. Prodrugs of gestodene for matrix-type transdermal drug delivery system. Pharm. Res. 15, 1419-1424.
Liu, J., Hu, W., Chen, H., Ni, Q., Xu, H., Yang, X., 2007. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm. 328, 191-195.
Lombardi Borgia, S., Regehly, M., Sivaramakrishnan, R., Mehnert, W., Korting, H.C., Danker, K., Röder, B., Kramer, K.D., Schäfer-Korting, M., 2005. Lipid nanoparticles for skin penetration enhancement-correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J. Control. Release 110, 151-163.
Lu, B., Xiong, S.B., Yang, H., Yin, X.D., Chao, R.B., 2006. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur. J. Pharm. Sci. 28, 86-95.
Luo, Y., Chen, D., Ren, L., Zhao, X., Qin, J., 2006. Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability. J. Control. Release 114, 53-59.
Lowes, M.A., Bowcock, A.M., Krueger, J.G., 2007. Pathogenesis and therapy of psoriasis. Nature 445, 866-873.
Maia, C.S., Mehnert, W., Schafer-Korting, M., 2000. Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int. J. Pharm. 196, 165-167.
Mancuso, G., Balducci, A., Casadio, C., Farina, P., Staffa, M., Valenti, L., Milani, M., 2003. Efficacy of betamethasone valerate foam formulation in comparison with betamethasone dipropionate lotion in the treatment of mild-to-moderate alopecia areata: a multicenter, prospective, randomized, controlled, investigator-blinded trial. Int. J. Dermatol. 42, 572-575.
Mason, T.G., 1999. New fundamental concepts in emulsion rheology. Curr. Opin. Colloid Interface Sci. 4, 231-238.
Mensing, H., Korsukewitz, G., Yawalkar, S., 1991. A double-blind, multicenter comparison between 0.05% halobetasol propionate ointment and 0.05% betamethasone dipropionate ointment in chronic plaque psoriasis. J. Am. Acad. Dermatol. 25, 1149-1152.
Mehnert, W., Mäder, K., 2001.Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 47, 165-196.
Mei, Z., Chen, H., Wang, T., Yang, Y., Yang, X., 2003. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur. J. Pharm. Biopharm. 56, 189-196.
Miglietta, A., Cavalli, R., Bocca, C., Gabriel, L., Gasco, M.R., 2000. Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int. J. Pharm. 210, 61-67.
Milani, M., Antonio Di Molfetta, S., Gramazio, R., Fiorella, C., Frisario, C., Fuzio, E., Marzocca, V., Zurilli, M., Di Turi, G., Felice, G., 2003. Efficacy of betamethasone valerate 0.1% thermophobic foam in seborrhoeic dermatitis of the scalp: an open-label, multicentre, prospective trial on 180 patients. Curr. Med. Res. Opin. 19, 342-345.
Moan, J., Berg, K., Gadmar, O.B., Iani, V., Ma, L., Juzenas, P., 1999. The temperature dependence of protoporphyrin IX production in cells and tissues. Photochem. Photobiol. 70, 669-673.
Moore, A., Basilion, J.P., Chiocca, E.A., Weissleder, R., 1998. Measuring transferrin receptor gene expression by NMR imaging. Biochim. Biophys. Acta 1402, 239-249.
Müller, R.H., Methnert, W., Lucks J.S., 1995. Solid lipid nanoparticles (SLN)-An alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm. 41, 62-69.
Müller, K., Bendtzen, K., 1996. 1,25-Dihydroxyvitamin D3 as a natural regulator of human immune functions. J. Investig. Dermatol. Symp. Proc. 1, 68-71.
Müller, R.H., Ruhl, D., Runge, S., Schulze-Forster, K., Mehnert, W., 1997. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm. Res. 14, 458-462.
Müller, R.H., Mäder, K., Gohl, A.S., 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery-A review of the state of art. Eur. J. Pharm. Biopharm. 50, 161-177.
Müller, R.H., Radtke, M., Wissing, S.A., 2002a. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 242, 121-128.
Müller, R.H., Radtke, M., Wissing, S.A., 2002b. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54, S131-S155.
Müller, R.H., Petersen, R.D., Hommoss, A., Pardeike, J., 2007. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug. Deliv. Rev. 59, 522-530.
Murakami, T., Tsuchida, K., 2008. Recent advances in inorganic nanoparticle-based drug delivery systems. Mini. Rev. Med. Chem. 8, 175-183.
Nickoloff, B.J., Bonish, B., Huang, B.B., Porcelli, S.A., 2000. Characterization of a T cell line bearing natural killer receptors and capable of creating psoriasis in a SCID mouse model system. J. Dermatol. Sci. 24, 212-225.
Nickoloff, B.J., Nestle, F.O., 2004. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J. Clin. Invest. 113, 1664-1675.
Nielsen, P.G., 1993. Calcipotriol or clobetasol propionate occluded with a hydrocolloid dressing for treatment of nummular psoriasis. Acta Derm. Venereol. 73, 394.
Nijsten, T., Lambert, J., 2006. Dermatologists' views and opinions about photo (chemo) therapy and conventional systemic psoriasis therapies: results from a Belgian survey. Dermatology 213, 123-133.
Nimkulrat, P., Leenutaphong, V., Sudtim, S., 2005. Phototoxicity of new psoralen-containing gels and creams versus bath PUVA. J. Med. Assoc. Thai. 88, 1406-1411.
Nishimura, M., Hori, Y., Nishiyama, S., Nakamizo, Y., 1993. Topical 1alpha,24 (R)-dihydroxyvitamin D3 for the treatment of psoriasis. Review of the literature. Eur. J. Dermatol. 3, 255-261.
Olbrich, C., Kayser, O., Müller, R.H., 2002. Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)-effect of surfactants, storage time and crystallinity. Int. J. Pharm. 237, 119-128.
Park, Y.K., Hann, S.K., Im, S., Kim, S., 1993. Skin concentration of 8-methoxypsoralen, 5-methoxypsoralen and 4,5’,8-trimethylpsoralen in guinea pigs. J. Dermatol. Sci. 5, 19-24.
Papp, K.A., Guenther, L., Boyden, B., Larsen, F.G., Harvima, R.J., Guilhou, J.J., Kaufmann, R., Rogers, S., van de Kerkhof, P.C.M., Hanssen, L.I., Tegner, E., Burg, G., Talbot, D., Chu, A., 2003. Early onset of action and efficacy of a combination of calcipotriene and betamethasone dipropionate in the treatment of psoriasis. J. Am. Acad. Dermatol. 48, 48-54.
Peng, Q., Berg, K., Moan, J., Kongshaug, M., Nesland, J.M., 1997. 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem. Photobiol. 65, 235-251.
Perry, H.O., Soderstrom, C.W., Schulze, R.W., 1968. The Goeckerman treatment of psoriasis. Arch. Dermatol. 98, 178-182.
Pittelkow, M.R., Perry, H.O., Muller, S.A., Maughan, W.Z., O'Brien, P.C., 1981. Skin cancer in patients with psoriasis treated with coal tar. A 25-year follow-up study. Arch. Dermatol. 117, 465-468.
Puglia, C., Blasi, P., Rizza, L., Schoubben, A., Bonina, F., Rossi, C., Ricci, M., 2008. Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int. J. Pharm. 357, 295-304.
Qiao, C.F., Han, Q.B., Mo, S.F., Song, J.Z., Xu, L.J., Chen, S.L., Yang, D.J., Kong, L.D., Kung, H.F., Xu, H.X., 2006. Psoralenoside and isopsoralenoside, two new benzofuran glycosides from Psoralea corylifolia. Chem. Pharm. Bull. 54, 714-716.
Rich, S.J., Bello-Quintero C.E., 2004. Advancements in the treatment of psoriasis: role of biologic agents. J. Manage. Care Pharm. 10, 318-325.
Rivera, A.M., Hsu, S., 2005. Topical halobetasol propionate in the treatment of plaque psoriasis: a review. Am. J. Clin. Dermatol. 6, 311-316.
Said, A., Makki, S., Muret, P., Rouland, J.C., Toubin, G., Millet, J., 1996. Lipophilicity determination of psoralens used in therapy through solubility and partitioning: comparison of theoretical and experimental approaches. J. Pharm. Sci. 85, 387-392.
Saraiya, D., Bolton, D., 1990. The use of Precirol® to prepare sustained release tablets of theophylline and quinidine gluconate. Drug Dev. Ind. Pharm. 16, 1963-1969.
Saupe, A., Sylvia, A., Wissing, A.L., 2005. Solid lipid nanoparticles (SLN) and nanostructuredl ipid carriers (NLC)-structural investigations on two different carrier systems. Bio-Med. Mater. Eng. 15, 393-402.
Schatzlein, A., Cevc, G., 1998. Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high-resolution confocal laser scanning microscopy study using highly deformable vesicles (Transfersomes). Br. J. Dermatol. 138, 583-592.
Schmid, M.H., Korting, H.C., 1996. Coal tar, pine tar and sulfonated shale oil preparations: comparative activity, efficacy and safety. Dermatology 193, 1-5.
Schoket, B., Horkay, I., Kosa, A., Paldeak, L., Hewer, A., Grover, P.L., Phillips, D.H., 1990. Formation of DNA adducts in the skin of psoriasis patients, in human skin in organ culture, and in mouse skin and lung following topical application of coal-tar and juniper tar. J. Invest. Dermatol. 94, 241-246.
Schoepf, U., Marecos, E.M., Melder, R.J., Jain, R.K., Weissleder, R., 1998. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 24, 642-646, 648-651.
Serpe, L., Catalano, M.G., Cavalli, R., Ugazio, E., Bosco, O., Canaparo, R., Muntoni, E., Frairia, R., Gasco, M.R., Eandi, M., Zara, G.P., 2004. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur. J. Pharm. Biopharm. 58, 673-680.
Shen, S.C., Lee, W.R., Fang, Y.P., Hu, C.H., Fang, J.Y., 2006. In vitro percutaneous absorption and in vivo protoporphyrin IX accumulation in skin and tumors after topical 5-aminolevulinic acid application with enhancement using an erbium:YAG laser. J. Pharm. Sci. 95, 929-938.
Singh, J., Singh, S., 1995. Transdermal iontophoresis: effect of penetration enhancer and iontophoresis on drug transport and surface characteristics of human epidermis. Curr. Probl. Dermatol. 22, 179-183.
Singla, A.K., Garg, A., Aggarwal, D., 2002. Paclitaxel and its formulations. Int. J. Pharm. 235, 179-192.
Sminkels, O.Q., Prins, M., Veeniiuis, R.T., De Boo, T., Gerritsen, M.J., Van Der Wilt, G.J., Van De Kerkhof, P.C., Van Der Valk, P.G., 2004. Effectiveness and side effects of UVB-phototherapy, dithranol inpatient therapy and a care instruction programme of short contact dithranol in moderate to severe psoriasis. Eur. J. Dermatol. 14, 159-165.
Stern, R.S., 1997. Psoriasis. Lancet 350, 349-353.
Stern, R.S., Nichols K.T., Vakeva L.H., 1997. Malignant melanoma in patients treated for psoriasis with methoxsalen (psoralen) and ultraviolet A radiation (PUVA). The PUVA follow-up study. N. Engl. J. Med. 336, 1041-1045.
Stern, R.S., Liebman, E.J., Vakeva, L., 1998. Oral psoralen and ultraviolet-A light (PUVA) treatment of psoriasis and persistent risk of nonmelanoma skin cancer. PUVA follow-up study. J. Natl. Cancer Inst. 90, 1278-1284.
Stringer, M.R., Collins, P., Robinson, D.J., Stables, G.I., Sheehan-Dare, R.A., 1996. The accumulation of protoporphyrin IX in plaque psoriasis after topical application of 5-aminolevulinic acid indicates a potential for superficial photodynamic therapy. J. Invest. Dermatol. 107, 76-81.
Su, Y.H., Fang, J.Y., 2008. Drug delivery and formulations for the topical treatment of psoriasis. Expert Opin. Drug Deliv. 5, 235-249.
Syed, T.A., Hadi, S.M., Qureshi, Z.A., Nordstrom, C.G., Ali, S.M., 2001. Management of psoriasis vulgaris with methotrexate 0.25% in a hydrophilic gel: a placebo-controlled, double-blind study. J. Cutan. Med. Surg. 5, 299-302.
Takei, Y., Kunikata, T., Aga, M., Inoue, S.I., Ushio, S., Iwaka, K., Ikeda, M., Kurimoto, M., 2003. Tryptanthrin ihbibits interferon-γ production by peyer’s patch lymphocytes derived from mice that had been orally administered staphylococcal enterotoxin. Biol. Pharm. Bull. 26, 365-367.
Tosti, A., Piraccini, B.M., Cameli, N., Kokely, F., Plozzer, C., Cannata, G.E., Benelli, C., 1998. Calcipotriol ointment in nail psoriasis: a controlled double-blind comparison with betamethasone dipropionate and salicylic acid. Br. J. Dermatol. 139, 655-659.
Tranchant, T., Besson, P., Hoinard, C., Delarue, J., Antoine, J.M., Couet, C., Goré, J., 1997. Mechanisms and kinetics of α–linolenic acid uptake in Cac-2 clone TC7. Biochim. Biophys. Acta 1345, 151-161.
Trehan, M., Taylor C.R., 2002. Medium-dose 308-nm excimer laser for the treatment of psoriasis. J. Am. Acad. Dermatol. 47, 701-708.
Trotta, M., Pattarino, F., Gasco, M.R., 1996. Influence of counter ions on the skin permeation of methotrexate from water-oil microemulsions. Pharm. Acta Helv. 71, 135-140.
Trotta, M., Pattarino, F., Ignoni, T., 2002. Stability of drug-carrier emulaions containing phosphatidylcholine mixtures. Eur. J. Pharm. Biopharm. 53, 203-208.
Trotta, M., Ugazio, E., Peira, E., Pulitano, C., 2003. Influence of ion pairing on topical delivery of retinoic acid from microemulsions. J. Control. Release 86, 315-321.
Tse, T.W., 2003. Use of common Chinese herbs in the treatment of psoriasis. Clin. Exp. Dermatol. 28, 469-475.
van de Kerkhof, P.C., Vissers, W.H., 2004. Established treatments of psoriasis. Curr. Drug Targets Inflamm. Allergy 3, 145-156.
van de Kerkhof, P.C., 2005. The topical treatment of psoriasis. Clin. Exp. Dermatol. 30, 205-208.
van de Kerkhof, P.C., 2006. Update on retinoid therapy of psoriasis in: an update on the use of retinoids in dermatology. Dermatol. Ther. 19, 252-263.
Vasir, J.K., Reddy, M.K., Labhasetwar, V.D., 2005. Nanosystems in drug targeting: opportunities and challenges. Curr. Nanosci. 1, 47-64.
Venkateswarlu, V., Manjunath, K., 2004. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release 95, 627-638.
Veraldi, S., Schianchi, R., 2003. Short-contact therapy with tazarotene in psoriasis vulgaris. Dermatology 206, 347-348.
Verucchi, G., Calza, L., Attard, L., Chiodo, F., 2002. Acute hepatitis induced by traditional Chinese herbs used in the treatment of psoriasis. J. Gastroenterol. Hepatol. 17, 1342-1343.
Wachter, E., Dees C., Harkins, J., Scott T., Petersen, M., Rush, R.E., Cada, A., 2003. Topical rose bengal: pre-clinical evaluation of pharmacokinetics and safety. Lasers Surg. Med. 32, 101-110.
Wackernagel, A., Hofer, A., Legat, F., Kerl, H., Wolf, P., 2006. Efficacy of 8-methoxypsoralen vs. 5-methoxypsoralen plus ultraviolet A therapy in patients with mycosis fungoides. Br. J. Dermatol. 154, 519-523.
Wang, J.J., Sung, K.C., Hu, O.Y.P., Yeh, C.H., Fang, J.Y., 2006. Submicron lipid emulsion as a drug delivery system for nalbuphine and its prodrugs. J. Control. Release 115, 140-149.
Weinstein, G.D., McCullough, J.L., Olsen E., 1989. Topical methotrexate therapy for psoriasis. Arch. Dermatol. 125, 227-230.
Westesen, K., Bunjes, H., Koch, M.H.J., 1997. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release 48, 223-236.
Weissleder, R., Cheng, H.C., Bogdanova, A., Bogdanov, A., Jr., 1997. Magnetically labeled cells can be detected by MR imaging. J. Magn. Reson. Imaging 7, 258-263.
Weyenberg, W., Filev, P., Van den Plas, D., Vandervoort, J., De Smet, K., Sollie, P., Ludwig, A., 2007. Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application. Int. J. Pharm. 337, 291-298.
Wissing, S.A., Müller, R.H., 2002. The influence of the crystallinity of lipid nanoparticles on their occlusive properties. Int. J. Pharm. 242, 377-379.
Witman, P.M., 2001. Topical therapies for localized psoriasis. Mayo Clin. Proc. 76, 943-949.
Wong, T.W., Zhao, Y.L., Sen, A., Hui, S.W., 2005. Pilot study of topical delivery of methotrexate by electroporation. Br. J. Dermatol. 152, 524-530.
Wong, H.L., Rauth, A.M., Bendayan, R., Manias, J.L., Ramaswamy, M., Liu, Z., Erhan, S.Z., Wu, X.Y., 2006. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm. Res. 23, 1574-1585.
Wong, H.L., Bendayan, R., Rauth, A.M., Li, Y., Wu, X.Y., 2007. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev. 59, 491-504.
Wu, Z., Joo, H., Lee, T.G., Lee, K., 2005. Controlled release of lidocaine hydrochloride from the surfactant-doped hybrid xerogels. J. Control. Release 104, 497-505.
Yamauchi, P.S., Rizk D., Lowe, N.J., 2004. Retinoid therapy for psoriasis. Dermatol. Clin. 22, 467-476.
Yang, S.C., Lu, L.F., Cai, Y., 1999. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Release 59, 299-307.
Yang, J., Yan, B., 2007. Photochemotherapeutic agent 8-methoxypsoralen induces cytochrome P450 3A4 and carboxylesterase HCE2: evidence on an involvement of the pregnane X receptor. Toxicol. Sci. 95, 13-22.
Ye, J., Wang, Q., Zhou, X., Zhang, N., 2008. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm. 352, 273-279.
Youenang Piemi, M.P., Kornev, D., Benita, S., Marty, J., 1999. Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. J. Control. Release 58, 177-187.
Yuan, Z.Z., Yuan, X., Xu, Z.X., 1982. Studies on tabellae indigo naturalis in treatment of psoriasis. J. Tradit. Chin. Med. 2, 306.
Yuan, H., Miao, J., Du, Y.Z., You, J., Hu, F.Q., Zeng, S., 2008. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int. J. Pharm. 348, 137-145.
Zaynoun, S.T., Kurban, A.K., 1974. Evaluation of the efficacy of topical corticosteroids. Br. J. Dermatol. 90, 85-90.
Zhang, X.G., Miao, J., Dai, Y.Q., Du, Y.Z., Yuan, H., Hu, F.Q., 2008. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int. J. Pharm. (In press)
zur Mühlen, A., Schwarz, C., Mehnert, W., 1998. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur. J. Pharm. Biopharm. 45, 149-155.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top