跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳航
研究生(外文):Chia Hang Li
論文名稱:運用直覺模糊熵值法衡量屬性資訊重要程度
論文名稱(外文):Accessing Informational Importance Using Intuitionistic Fuzzy Entropy Measures
指導教授:陳亭羽陳亭羽引用關係
指導教授(外文):T.Y. Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:企業管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:125
中文關鍵詞:多屬性決策直覺模糊集合直覺模糊熵客觀權重
外文關鍵詞:MADMintuitionistic fuzzy setsintuitionistic fuzzy entropyobjective weight
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在多屬性決策中,如何合理、適當的來衡量屬性權重是非常重要的問題,因為不同的屬性權重分配,往往會造成最後所得到的決策結果的不同。自從學者提出直覺模糊集合之後,近年開始有學者應用直覺模糊集合至多屬性決策的領域,來幫助我們可以得到更準確的資料,但也因此造成我們所得到的資料,是更加複雜、更加難以處理的,而資料本身也充滿更多的不確定性,因此如何衡量資料本身的可信度相對是非常重要的問題,然而,在過去的研究中,鮮少有學者討論這部份的問題,因此本研究運用直覺模糊熵的特性,發展出一種新的客觀權重求解方法,來幫助我們衡量屬性的資訊重要程度。再者,過去有許多學者運用不同的理論架構提出很多不同的直覺模糊熵測量方法,而本研究也一併探討各個方法之間存在的差異性。而根據實驗結果,我們了解到各種測量方法之間,存在著很大的差異性,即使是源自相同理論的測量方法,也有相當程度的差異存在,此外,由實驗結果我們也了解到,屬性數和方案數也會對於公式之間的差異程度造成明顯的影響。
In Multiple Attribute Decision Making (MADM), it is important to properly assess the attribute weight, because different weight result would often cause entirely different decision result. Furthermore, after the IFS was applied to solve MADM problems, it causes our data and decision matrix get more complex and contain more uncertainty, and therefore it is relatively important to make sure of the credibility of data itself. However, there is little investigation on MADM with the credibility of data being explicitly taken into account in the past. In our research, we propose a new objective weight method by using IF entropy measures for MADM under intuitionistic fuzzy environment. We utilize the nature of IF entropy to assess the attribute weight based on the credibility of data. Moreover, there were many IF entropy measures which were originated with different theories, and we also investigate the differences among those varied measures. According to the experiment result, the differences undoubtedly exist among those measures. Even the measures which were originated from the same theory also contain variation among them. Besides, we also understand the number of attributes and alternatives would influence the degree of difference among those measures.
Contents
Chpater I Introduction…………………………………………………..……1
1.1 Motivation…………………………………………………………………..1
1.2 Objectives ………………………………………………………………..…2
Chpater II Literature Review……………………………………………….…3
2.1 Multiple Attribute Decision Making……………………………………..…3
2.2 Fuzzy Multiple Attributes Decision Making……………………………..…4
2.3 MADM Based on Intuitionistic Fuzzy Set………………………………4
2.4 Methods for Assessing Attribute Weights……………………………….7
2.4.1 Methods for Assessing Subjective Weights……………………………7
2.4.2 Methods for Assessing Objective Weights………………………....9
2.4.3 Compromise Methods for Assessing Attribute Weights……………...11
Chpater III Entropy Measures for Intuitionisitc Fuzzy Sets………………….13
3.1 Intuitionistic Fuzzy Sets and Interval-valued Fuzzy Sets…………………13
3.1.1 Intuitionistic Fuzzy Sets……………………………………………...13
3.1.2 Interval-valued Fuzzy Sets…………………………………………...13
3.2 Fuzzy Entropy on Fuzzy Sets……………………………………………...14
3.3 Entropy Measure on Intuitionistic Fuzzy Sets……………………….........14
3.4 Summary of IF Entropy Measures………………………………………...21
Chpater IV Research Method…………………………………………………34
4.1 Algorithm………………………………………………………………….34
4.2 Numerical Example………………………………………………………..36
Chpater V Experiment Analysis…………………………………………..…43
5.1 Data Analysis………………………………………………………………43
5.2 Experiment Analysis of Group 1…………………………………..……44
5.2.1 Analysis of Average r-values of Group 1…………………….………44
5.2.2 Analysis of Average ρ-values of Group 1…………………………….47
5.2.3 Analysis of Contradiction Rates of Group 1………………………49
5.2.4 Analysis of Inversion Rates of Group 1……………………………..52
5.2.5 Analysis of Consistency Rates of Group 1…………………………...54
5.3 Experiment Analysis of Group 2……………………………………….57
5.3.1 Analysis of Average r-values of Group 2…………………………….57
5.3.2 Analysis of Average ρ-values of Group 2…………………………….58
5.3.3 Analysis of Contradiction Rates of Group 2………………………60
5.3.4 Analysis of Inversion Rates of Group 2……………………………...61
5.3.5 Analysis of Consistency Rates of group 2…………………………...63
5.4 Experiment Analysis of Group 3………………………………………......64
5.4.1 Analysis of Average r-values of Group 3…………………………….64
5.4.2 Analysis of Average ρ-values of Group 3…………………………….65
5.4.3 Analysis of Contradiction Rates of Group 3………………………66
5.4.4 Analysis of Inversion Rates of Group 3……………………………..68
5.4.5 Analysis of Consistency Rates of group 3………………………….69
5.5 Experiment Analysis of Group 4……………………………………….70
5.5.1 Analysis of Average r-values of Group 4…………………………….70
5.5.2 Analysis of Average ρ-values of Group 4…………………………….73
5.5.3 Analysis of Contradiction Rates of Group 4………………………75
5.5.4 Analysis of Inversion Rates of Group 4……………………………..78
5.5.5 Analysis of Consistency Rates of Group 4…………………………...80
5.6 Experiment Analysis among Four Groups………………………………...82
5.6.1 Analysis of Average r-values among Four Groups…………………..83
5.6.2 Analysis of Average ρ-values among Four Groups…………………..85
5.6.3 Analysis of Contradiction Rates among Four Group………………...87
5.6.4 Analysis of Inversion Rates among Four Groups……………………88
5.6.5 Analysis of Consistency Rates among Four Groups…………………90
5.7 Summarization of Experiment Results…………………………………….92
5.8 Second-order Regression Model…………………………………………..95
5.7.1 Regression Analysis of Group 1…………………………………...96
5.7.2 Regression Analysis of Group 2……………………………….......98
5.7.3 Regression Analysis of Group 3………………………………….100
5.7.4 Regression Analysis of Group 4………………………………….102
5.7.5 Regression Analysis of the Comparisons among Four Groups……..104
5.9 Summary of Analyze……………………………………………….…..107
Chpater VI Conclusions………………………………………………………109
6.1 Discussions….……………………………………………………………109
6.2 Future Research…………………………………………………………..109
Reference ………………………………………………………………………110






List of Figures
Figure 3.1 Test of β values of G4.2…...…………………………………….22
Figure 3.2 Test of k values of G1.2...……………………………………….23
Figure 3.3 Test of α values of G4.1………………………..…………….….24
Figure 5.1 Average r-value of group 1…………………………………………..45
Figure 5.2 Average ρ-value of group 1 …………………………………….…48
Figure 5.3 Contradiction rate of group 1………………………………...……50
Figure 5.4 Inversion rate of group 1………………………………………….…..53
Figure 5.5 Consistency rate of group 1………………………………………..55
Figure 5.6 Average r-value of group 2…………………………………..………57
Figure 5.7 Average ρ-value of group 2………………………………………..…59
Figure 5.8 Contradiction rate of group 2………………………………….……...60
Figure 5.9 Inversion rate of group 2……………………………………….…..…62
Figure 5.10 Consistency rate of group 2………………………………….…….63
Figure 5.11 Average r-value of group 3………………………………………..…65
Figure 5.12 Average ρ-value of group 3………………………………………..…66
Figure 5.13 Contradiction rate of group 3……………………………………...…67
Figure 5.14 Inversion rate of group 3…………………………………………..….68
Figure 5.15 Consistency rate of group 3……………………………………….70
Figure 5.16 Average r-value of group 4………………………………………..…71
Figure 5.17 Average ρ-value of group 4……………………………………..….73
Figure 5.18 Contradiction rate of group 4……………………………………...76
Figure 5.19 Inversion rate of group 4……………………………………………..78
Figure 5.20 Consistency rate of group 4……………………………………..…81
Figure 5.21 Average r-value among four groups……………………………….…84
Figure 5.22 Average ρ-value among four groups…………………………………86
Figure 5.23 Contradiction rate among four groups………………………………..87
Figure 5.24 Inversion rate among four groups……………………………………89
Figure 5.25 Consistency rate among four groups…………………………………91


List of Tables
Table 3.1 Scholar and IF entropy measures…………………………………….……25
Table 3.2 The numbered IF entropy measures…………………………………….…28
Table 3.3 The IF entropy measures for experiment……………………………….…31
Table 4.1 Decision matrix in the numerical example……………………………...…38
Table 4.2 IF entropy values are calculated by using A1………………...……………39
Table 4.3 The normalized IF entropy values by using A1……………...…………39
Table 4.4 The normalized entropy values for decision matrix by using A1…….……39
Table 4.5 The weights of each attribute by using A1………………………………...40
Table 4.6 The weight values produced by six different formulas……………………40
Table 4.7 The weight rank of the attribute…………………………………………...41
Table 4.8 The Pearson and Spearman rank correlation……………………………....41
Table 5.1 The average consistency rate of the equations…………………….….83
Table 5.2 The total average contradiction rate of each measure…………………......92
Table 5.3 Total average inversion rate of each measure…………………………..…93
Table 5.4 Average contradiction, inversion and consistency rate among four groups.93
Table 5.5 The total average of average ρ-values of each comparison…………..……94
Table 5.6 The regression result of group 1………………………………………..…97
Table 5.7 The regression result of group 2………..………………………………..99
Table 5.8 The regression result of group 3………………………….........................101
Table 5.9 The regression result of group 4………………………………………….103
Table 5.10 The regression result of the comparisons among 4 groups…..................105
References
Atanassov, K. (1986), “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, Vol.20, No.1, pp.87-96.
Atanassov, K., and Gargov, G. (1989), “Interval-valued intuitionistic fuzzy sets,” Fuzzy Sets and Systems, Vol. 31, No. 3, pp.343-349.
Bellman, R.E., and Zadeh, L.A. (1970), “Decision Making in a fuzzy environment,” Management Science, Vol. 17, No. 4, pp.141-164.
Buckley, J.J. (1984), “The multiple judge, multiple criteria ranking problem: A fuzzy set approach,” Fuzzy Sets and Systems, Vol. 13, No. 1, pp.25-37.
Buckley, J.J. (1985), “Fuzzy hierarchical analysis,” Fuzzy Sets and Systems, Vol. 17, No. 3, pp.233-247.
Burillo, P., and Bustince, H. (1996), “Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets,” Fuzzy Sets and Systems, Vol. 78, No. 3, pp.305-316.
Capocelli, R.M., and De Luca, A. (1973), “Fuzzy sets and decision theory,” Information and Control, Vol. 23, No. 5, pp.446-473.
Chen, S.J., and Hwang, C.L. (1992), Fuzzy Multiple Attribute Decision Making Methods and Applications, Berlin/Heidelberg/New York: Springer- Veralg.
Chen, S.M., and Tan, J.M. (1994), “Handling multicriteria fuzzy decision-making problems based on vague set theory,” Fuzzy Sets and Systems, Vol. 67, No. 2, pp.163-172.
Chen, Y., and Qu, L. (2006), “Evaluating the selection of logistics centre location using fuzzy MCDM model based on entropy weight,” Proceeding of the 6th World Congress on Intelligent Control and Automation.
Chen, W., and Xia, J.H. (2007), “An optimal weights combination method considering both subjective and objective weight information,” Mathematics in Practice and Theory, Vol. 37, No. 1, pp.17-22.
Chiang, C.S., Wu, P.L., Chiang, S.T., Chang, Y.C., Chan, F.T., Chang, S.T., and Wen, K.L. (1998), Introduction of Grey Theory, (In Chinese) Gau-Lih.
Chu, A.T.W., Kalaba, R.E., and Spingarn, K. (1979), “A comparison of two methods for determining the weights of belonging to fuzzy sets,” Journal of Optimization Theory and Application, Vol. 27, No. 4, pp.531-538.
Churchman, C.W., and Ackoff, R.L. (1957), Introduction to Operations Research, New York: John-Wiley.
De Luca, A., and Termini, S. (1972), “A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory,” Information and Control, Vol. 20, No. 4, pp.301-312.

Deng, J.L. (1989), “Introduction to grey system theory,” Journal of Grey System, Vol. 1, No. 1, pp.1-24.
Diakoulaki, D., Mavrotas§, G., and Papayannakis¶, L. (1995), “Determing objective weights in multiple criteria problems: The critic method,” Computers and Operations Research, Vol. 22, No. 7, pp.763-770.
Dubois, D., and Prade, H. (1980), Fuzzy Sets and systems: Theory and Applications, New York: Academic Press.
Edwards, W., and Barron, F.H. (1994), “SMARTS and SMARTER: Improved simple methods for multiattribute utility measurement,” Organizational Behavior and Human Decision Processes, “Vol. 60, No. 3, pp.306-325.
Guo, H.L., and Huang, D.X. (2007), “Weight integration method without preference on multi-attribute decision making,” Journal of Southwest Jiaotong University, Vol. 42, No. 4, pp.505-510.
Gau, W.L., and Buehrer, D.J. (1993), “Vague sets,” IEEE Transactions on Systems Man and Cybernetics, Vol. 23, No. 2, pp.610-614.
Hong, D.H., and Choi, C.H. (2000), “Multicriteria fuzzy decision-making problems based on vague set theory,” Fuzzy Sets and Systems, Vol. 114, No. 1, pp.103-113.
Hsu, T.H. (1998), “Fuzzy delphi hierarchy process,” (In Chinese) Journal of the Chinese Fuzzy Systems Association, Vol. 4, No. 1, pp.59-72.
Huang, D.X., Wu, Z.Y., and Zong, Y.Z. (2004), “An impersonal multi-attribute weight allocation method based on attribute importance,” Systems Engineering-Theory Methodology Applications, Vol. 13, No. 3, pp.203-207.
Hung, W.L. (2003), “A note on entropy of intuitionistic fuzzy sets,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 11, No. 5, pp.627-634.
Hung, W.L., and Yang, M.S. (2006), “Fuzzy entropy on intuitionistic fuzzy sets,” International Journal of Intelligent Systems, Vol. 21, No. 4, pp.443-451.
Hwang, C.L. and Yoon, K. (1981), Multiple Attribute Decision Making-Methods and Applications, A state-of-the-art survey, New York: Springer-Verlag.
Kickert, W.J.M. (1978), Fuzzy Theories on Decision-Making-A Critical Review, Boston: Kluwer Academic Publishers.
Laarhoved, P.J.M., and Perdrycz, W. (1983), “A fuzzy extension of Saaty’s priority theory,” Fuzzy Sets and Systems, Vol. 11, No. 1-3, pp.229-224.
Li, D.F. (2005), “Multiatribute decision making models and methods using intuitionistic fuzzy sets,” Journal of Computer System Sciences, Vol. 70, No. 1, pp.73-85.


Li, F., Lu, A., and Cai, L. (2001), “Methods of multi-criteria fuzzy decision making based on vague sets,” (in Chinese) Journal of Huazhong University of Science and Technology, Vol. 29, No. 7, pp.1-3.
Li, X.H., Li, Y.M., Gu, Z.H., and Yang, W.D. (2004), “Competitive situation analysis of regional logistics development based on AHP and entropy weight,” Journal of Southeast University, Vol. 34, No. 3, pp.398-401.
Lin, L., Yuan, X.H., and Xia, Z.Q. (2007), “Mulicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets,” Journal of Computer and Systems Sciences, Vol. 73, No. 1, pp.84-88.
Liu, X.C. (1992), “Entropy distance measure and similarity measure of fuzzy sets and their relations,” Fuzzy Sets and Systems, Vol. 52, No. 3, pp.305-318.
Liu, H.W., and Wang, G.J. (2007), “Multi-criteria decision-making methods based on intuitionistic fuzzy sets,” European Journal of Operational Research, Vol. 179, No. 1, pp.220-233.
Ishikawa, A., Amagasa, T., Tamizawa, G., Totsuta, R., and Mieno, H. (1993), “The max-min Delphi method and fuzzy Delphi method via fuzzy integration,” Fuzzy Sets and Systems, Vol. 55, No. 3, pp.241-253.
Islei, G., and Lockett, A.G. (1988), “Judgment modeling based on geometric least square,” European Journal of Operational Research, Vol. 36, No. 1, pp.27-35.
Ma, J., Fan, Z.P., and Huang, L.H. (1999), “A subjective and objective integrated approach to determine attribute weights,” European Journal of Operational Research, Vol. 112, No. 2, pp.397-404.
Mahdipoor, H.R. (2006), “Flow pattern recognition in tray columns with MADM (multiple attribute decision maling) method,” Computers and Chemical Engineering, Vol. 30, No. 6-7, pp.1197-1200.
Nijkamp, P. (1977), “Stochastic quantitative and qualitative multicriteria analysis for environmental design,” Papers of the Regional Science Associaiton, Vol. 39, No. 2, pp.175-199.
Prato, T. (1999), “Multiple attribute decision analysis for ecosystem management,” Ecological Economics, Vol. 63, No. 2-3, pp.627-632.
Saaty, T.L. (1980), The Analytic Hierarchy Process, New York: Mcgraw-Hill.
Shu, L.C., Chang, C.S., and Wang, F.F. (2007), “Optimization of environmental monitoring sites by entropy weight multiobject decision model,” Environmental Engineering, Vol. 25, No. 1, pp.61-63.
Srinivasan, V., and Shocker, A.D. (1973), “Linear programming techniques for multidimensional analysis of preference,” Psychometrika, Vol. 38, No. 3, pp.337-369.

Szmidt, E., and Kacprzyk, J. (2000), “Distances between intuitionistic fuzzy sets,” Fuzzy Sets and Systems, Vol. 114, No. 3, pp.505-518.
Szmidt, E., and Kacprzyk, J. (2001), “Entropy for intuitionistic fuzzy sets,” Fuzzy Sets and Systems, Vol. 118, No. 3, pp.467-477.
Takeda, E., Cogger, K.O., and Yu, P.L. (1987), “Estimating criterion weights using eigenvectors: A comparative study,” European Journal of Operational Research, Vol. 29, No. 3, pp.360-639.
Tong, Q.H. (2002), “The application of primary element analyzing methods in the index synthetic evaluation,” Journal of Beijing Institute of Technology Social Sciences Edition, Vol. 4, No. 1, pp.59-61.
Vlachos, I. K., and Sergiadis, G. D. (2007), “Subsethood, entropy, and cardinality for interval-valued fuzzy sets-An algebraic derivation,” Fuzzy Sets and Systems, Vol. 158, No. 12, pp.1384-1396.
Vlachos, I. K., and Sergiadis, G. D. (2007), “Intuitionistic fuzzy information- Applications to pattern recognition,” Pattern Recognition Letters, Vol. 28, No. 2, pp.197-206.
Wang, J.Q. (2006), “A multi-criteria interval intuitionistic fuzzy decision-making approach with incomplete certain information,” (in Chinese) Proceedings of Control and Decision Conference 2007, pp.1195-1198.
Wang, Z.X., and Li, Q.X. (2006), “An approach to integrate the final weights based on the subjective and objective weights,” Communication on Applied Mathematics and Computation, Vol. 20, No. 1, pp.87-92.
Wang, W., and Xin, X. (2005), “Distances measure between intuitionistic fuzzy sets,” Pattern Recognition Letters, Vol. 26, No. 1, pp.2053-2069.
Wang, J.Q., and Zhang, Z. (2006), “Compromise approach on multi-criteria intuitionistic fuzzy decision-making with incomplete certain information,” (in Chinese) Control and Decision, Vol. 21 No. 11 pp.1-5
Wu, J., Liang, C.Y., and Li, W.N. (2007), “Method to determine attribute weights based on subjective and objective integrated,” Systems Engineering and Electronics, Vol. 29, No. 3, pp.383-387.
Xu, X.Z. (2004), “A note on the subjective and objective integrated approach to determine attribute weights,” European Journal of Operations Research, Vol. 156, No. 2, pp.530-532.
Xu, Z. (2007), “Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making,” Fuzzy Optimization and Decision Making, Vol. 6, No. 2, pp.109-121.
Zadeh, L.A. (1965), “Fuzzy sets,” Information and Control, Vol. 8, No. 3, pp.338-353.
Zeleny, M. (1976), “The attribute-dynamic attribute model,” Management Science, Vol. 23, No. 1, pp.12-26.
Zeleny, M. (1982), Multiple Criteria Decision Making, New York: Graw-Hill.
Zeng, W., and Li, H. (2006), “Relationship between similarity measure and entropy of interval valued fuzzy sets,” Fuzzy Sets and Systems, Vol.157, No.11, pp.1477-1484.
Zhou, W.K. (2004), “ Objective weighting in multi-object decision making under fuzzy preference,” (in Chinese) Journal of Shanghai University, Vol. 10, No. 4, pp.410-412.
Zimmermann, H.J. (1985), Fuzzy Set Theory and Its Application, Boston: Kluewer Academic Publishers.
Zou, Z.H., Yun, Y., and Sun, J.N. (2006), “Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment,” Journal of Environmental Science, “Vol. 18, No. 5, pp.1020-1023.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top