跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:崔哲偉
研究生(外文):Che Wei Tsui
論文名稱:直覺模糊推論應用於消費者決策法則之研究
論文名稱(外文):An Inquiry into Consumer Decision Rules with Intuitionistic Fuzzy Inference
指導教授:陳亭羽陳亭羽引用關係
指導教授(外文):T.Y. Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:企業管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:129
中文關鍵詞:消費者決策直覺模糊推論蘊含式直覺模糊距離
外文關鍵詞:consumer decisionintuitionistic fuzzy inferenceimplicationintuitionistic fuzzy distance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於消費者個人的內在差異及無法掌控的外在因素影響,行銷人員無法準確預測消費者的購買行為。如今面臨全球競爭激烈的行銷環境,行銷人員若能了解消費者的決策過程,即可規劃有效的行銷策略。彙整過去文獻,大多探討某一變數對消費者決策的影響,例如:性別、消費者本身、產品特性、市場區隔等。因此本研究以直覺模糊推論方法應用於消費者決策,將過去學者曾提及可能影響消費者採取決策模型之因素共同納入探討,以提升整體之驗證效果。影響消費者採取決策模型之因素包含產品涉入(認知與情感因子)、知覺風險(社會、時間、財務、身體、績效、心理風險)、購買決策涉入與決策問題的複雜程度(產品經驗、購買頻率、決策過程願意花費的時間與心力);而決策模型可分為補償性決策模型(簡單加總、加權加總)、非補償性決策模型(連結、非連結、依序比較、觀點排除模型)、品牌忠誠決策模型以及怠惰決策模型。
本研究共回收288份問卷,有效問卷回收率70.24%。研究對象為國內大專院校具管理背景的學生,大專院校遍及北、中、南與東區14間學校。本研究是以配額抽樣評估樣本數分配,及以便利抽樣選取各地區學校。而本研究的產品代表乃依據Kotler and Keller (2006)的產品分類,將消費品分區分為便利品(牙膏)、選購品(牛仔褲)、特殊品(數位相機)及非搜尋品(保險)。
本研究方法為直覺模糊推論,一共使用九種蘊含式(S-1、S-2、S-3、S-4、R-1、R-2、R-4、QL-1、QL-3),將影響決策模型因素做為其前因,而採用決策模型的可能性為後果,建立模糊關係以進行推論。本研究將四大前因(十二個次購面)、四大決策模型(八種決策模型),分別以四對四、十二對四以及十二對八的模組進行推論。本研究結果將以隸屬度值、計分函數為指標,比對從受訪者蒐集到採取最高可能性的決策模型與經直覺模糊推論結果之差異,整體而言,無論是以四對四、十二對四或十二對八的模組驗證影響決策模型因素與消費者所採取決策模型之間的關係皆有良好的表現,整體而言以S-2、QL-3蘊含式的驗證結果最佳(最可能的決策模型),相符比率皆超過93.43%,平均符合比率甚至高達97.58%。以產品分類進行分析,牙膏、牛仔褲與保險,皆是S-2、QL-3蘊含式驗證結果最好,相符比率皆超過92.73%;而數位相機的驗證結果則包含S-2、S-3、R-2、QL-3。若以地區差異進行探討,相符比率皆超過91.70%。臺灣北區與南部地區推論結果較為相似。另外,本研究亦以歐幾里德與漢明直覺模糊距離公式衡量推論結果與實證資料之差異,本研究發現,十二對八的推論模組,其整體的推論結果比四對四與十二對四模組表現較為優異。
Due to the diversity of internal and external factors in consumer psychology, it is difficult for marketers to predict the consumer decision making behavior precisely. Because of the growing global competition, marketers should realize the consumer decision making and beyond in order to plan marketing strategies well. In the previous studies, scholars made studies of the effect among only one of the factors and consumer decision making model, e.g. gender, characteristics of consumers and products, market segmentation, and so on. Consequently, this research will apply intuitionistic fuzzy inference to analyze the relation between all of the various factors and consumer decision making. These factors include product involvement (cognitive and affective factors), perceived risk (social risk, time risk, financial risk, physical risk, performance risk and psychological risk), purchase-decision involvement, and levels of consumer decision making (product experience, purchase frequency, time, and devotion). Consumer decision making models are divided into compensatory models (simple additive and weighted additive), noncompensatory models (conjunctive model, disjunctive model, lexicographic model, and elimination-by- aspects model), the brand loyalty decision model, and the inertia decision model.
The research subjects of this study were college students at fourteen colleges in the north, midst, south, and east of Taiwan. This sampling strategy is quota sampling. In this study, 288 questionnaires were collected at an valid rate of 70.24%. The product categories selected in the empirical study are tooth paste, jeans, digital camera, and insurance.
The research method is intuitionistic fuzzy inference with several implications of S-1, S-2, S-3, S-4, R-1, R-2, R-4, QL-1 and QL-3. Intuitionistic fuzzy inference can be separated into three modules: four-to-four, twelve-to-four, and twelve-to-eight. The inference results were compared with respondents’ actual values on the degree of membership, score function, and intuitionistic fuzzy distances. In general, the results show that S-1 and QL-3 are better than others, and the average consistency rate is 97.58%. The S-2 and QL-3 implications are better than others in tooth paste, jeans and insurance categories, and the consistency rates are over 92.73%. The S-2, S-3, R-2, and QL-3 implications are better than others in the digital camera category, and the consistency rates are over 91.70%. The inference results in the north Taiwan are similar to south Taiwan. Finally, the twelve-to-eight module performs better than other modules based on the results via intuitionistic fuzzy distance measures.
指導教授推薦書
口試委員審定書
長庚大學授權書 iii
誌謝 iv
中文摘要 v
英文摘要 vi
目錄vii
圖目錄 ix
表目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究步驟 3
第二章 文獻探討 5
2.1 消費者決策模型 5
2.1.1 補償性決策模型 11
2.1.2 非補償性決策模型 13
2.1.3 舉隅 15
2.2 影響決策模型因素 17
2.2.1 涉入理論 18
2.2.2 購買決策涉入 24
2.2.3 知覺風險 24
2.3 判別問題解決類型 26
第三章 研究方法 28
3.1 模糊理論與發展 28
3.2 模糊推論 30
3.2.1 模糊命題 30
3.2.2 模糊邏輯與推理 30
3.2.3 模糊關係 32
3.3 模糊交集與聯集 33
3.4 直覺模糊理論 36
3.5 直覺模糊推論 37
3.5.1 直覺模糊蘊含式 37
3.5.2 直覺模糊推論運算 39
3.5.3 直覺模糊推論文獻 40
3.6 區間模糊推論數值例 43
第四章 實證研究 49
4.1 研究設計 49
4.2 問卷設計 52
4.2.1 涉入的衡量 52
4.2.2 知覺風險衡量 55
4.2.3 購買決策涉入衡量 57
4.2.4 判別問題解決類型 58
4.2.5 決策模型 59
4.3 人口統計資料 62
4.4 四對四的直覺模糊推論 64
4.4.1 以牙膏為代表性產品(四對四) 64
4.4.2 以牛仔褲為代表性產品(四對四) 66
4.4.3 以數位相機為代表性產品(四對四) 68
4.4.4 以保險為代表性產品(四對四) 70
4.5 十二對四的直覺模糊推論 72
4.5.1以牙膏為代表性產品(十二對四) 72
4.5.2以牛仔褲為代表性產品(十二對四) 74
4.5.3 以數位相機為代表性產品(十二對四) 76
4.5.4 以保險為代表性產品(十二對四) 78
4.6 十二對八的直覺模糊推論 80
4.6.1以牙膏為代表性產品(十二對八) 80
4.6.2以牛仔褲為代表性產品(十二對八) 82
4.6.3 以數位相機為代表性產品(十二對八) 84
4.6.4 以保險為代表性產品(十二對八) 86
4.7 综合直覺模糊推論結論 88
第五章 結論與建議 93
5.1 結論 93
5.2 建議 95
參考文獻 96
中文文獻 96
英文文獻 96
附錄 104
中文文獻:
1. 內政部(2008),歷年底各縣市人口數,http://sowf.moi.gov.tw/stat/month/m1-09.xls。
2. 教育部(2008),九十六學年度臺灣地區各縣市大學學生人數表,http://www.edu.tw/files/site_content/b0013/student.xls。
英文文獻:
1. Abd EI-Hakeim, K.M., and Zeyada, F.M. (2000), “Comments on some versions of intuitionistic fuzzy propositional calculus due to K. Atanassov and G. Gargov,” Fuzzy Sets and Systems, 110(3), 451-452.
2. Aladjov, H.T., Atanassov, K.T., Kim, S.K., Chang, O.B., and Kim, Y.S. (1999), “A generalized net-based machine learning model of an intuitionistic fuzzy abstract system,” Proceedings of 1999 IEEE International Fuzzy Systems Conference 2, 645-649.
3. Alden, D.L., Hoyer, W.D., and Wechasara, G. (1989), “Choice strategies and involvement, a cross-cultural analysis,” Advances in Consumer Research, 16, 119-126.
4. Alden, D.L., Stayman, D.M., and Hoyer, W.D. (1994), “Evaluation strategies of American and Thai consumers,” Psychology & Marketing 11(2), 145-161.
5. Alsina, C., and Trillas, E. (2005), “On iterative boolean-like laws of fuzzy sets,” Proceedings of 4th Conference Fuzzy Logic and Technologgy, Barcelona, Spain, 389-394.
6. Andrews, J.C., Durvasula, S., and Akhter, S.H. (1990), “A Framework for Conceptualizing and Measuring the Involvement Construct in Advertising Research,” Journal of Advertising 19(4), 27-40.
7. Arnould, E., Price, L., and Zinkhan, G. (2004), Consumers, 2nd ed., New York: McGraw/Irwin.
8. Arora, R. (1982), “Validation of an S-O-R model for situation, enduring, and response components of involvement,” Journal of Marketing Research 33, 413-417.
9. Assael, H. (2004), Consumer Behavior: A Strategic Approach, Boston: Houghton-Mifflin.
10. Atanassov, K.T. (1983), “Intuitionistic fuzzy sets,” VII ITKR’s Session, Deposed in Central Science-Technical Library of Bulg, Academy of Science, 1684-1697.
11. Atanassov, K. T. (1986), “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems 20, 87-96.
12. Atanassov, K.T., and Gargov, G. (1998), “Elements of intuitionistic fuzzy logic. Part I,” Fuzzy Sets and Systems, 95(1), 39-52.
13. Atanassov, K.T. (1999), Intuitionistic Fuzzy Sets, New York: Physica-Verlag.
14. Atanassov, K.T. (2001), “Remarks on the conjunctions, disjunctions and implications of the intuitionistic fuzzy logic,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9(1), 55-65.
15. Atanassov, K.T., and Georgiev, C. (1993), “Intuitionistic fuzzy prolog,” Fuzzy Sets and Systems 53, 121-128.
16. Atanassov, K.T., and Nikolov, N.G. (2001), “Remark on the pseudo-fixed points of the intuitionistic fuzzy logic operators,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9(1), 77-80.
17. Bakewell, C., and Mitcheel, V.W. (2004), “Male consumer decision-making styles,” International Review of Retail, Distribution and Consumer Research 14(2), 223-240.
18. Barach, J.A. (1969), “Advertising effectiveness and risk in the consumer decision process,” Journal of Marketing Research 6, 314-320.
19. Bauer, R.A. (1960), “Consumer behavior as risk taking” in Hancock, R.S. (Ed.), Dynamic marketing for a changing world, Chicago: American Marketing Association, 389-398.
20. Bettman, J.R. (1988), “Presidential address: processes of adaptivity in decision making,” in Houston, M.J. (ed.), Advances in Consumer Research, Provo: Association for Consumer Research, 1-4.
21. Billings, R.S., and Scherer, L.L. (1988), “The effects of response mode and importance on decision-making strategies: Judgment versus Choice,” Organizational Behavior and Human Decision Processes 41, 1-19.
22. Blackwell, R.D., Miniard, P.W., and Engle, J.F. (2006), Consumer Behavior, 9th ed., Australia: Thomson South-Western.
23. Bloch, P.H. (1981), “An exploration into the scaling of consumers’ involvement with a product class,” Advances in Consumer Research 8, 61-65.
24. Bloch, P. H., and Richins, M. L. (1986), “A theoretical model for the study of product importance perceptions,” Journal of Marketing 47, 69-81.
25. Browne, B.A., and Kaldenberg, D.O. (1997), “Conceptualizing self-monitoring: links to materialism and product involvement,” Journal of Consumer Marketing 14(1), 31-44.
26. Burillo, P., and Bustince, H. (1996), “Entropy on intuitionnistic fuzzy sets and on interval-valued fuzzy sets,” Fuzzy Sets and Systems 78, 305–316.
27. Bustince, H., Barrenechea, E., and Mohedano, V. (2004), “Intuitionistic fuzzy implication operators-an expression and main properties,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12(3), 387-406.
28. Cai, Y., Cude, B., and Swagler, R. (2004), “Country-of-origin effects on consumers' willingness to buy foreign products: an experiment in consumer decision making,” Consumer Interests Annual 50, 98-105.
29. Castillo, O., and Melin, P. (2003), “A new method for fuzzy inference in intuitionistic fuzzy systems,” Proceedings of FUZZ-IEEE 2003, Louis, Missouri, USA, 420-425.
30. Celsi, R.L., and Olson, J.C. (1988), “The role of involvement in attention and comprehension processes,” Journal of Consumer Research 15, 210-224.
31. Chen, S.M., and Tan, J.M. (1994), “Handling multicriteria fuzzy decision-making problems based on vague set theory,” Fuzzy Sets and Systems 67(2), 163-172.
32. Ciftcibasi, T. (1995), “Multi-universe fuzzy logic and fuzzy decision processes,” Proceedings of Flomac-96 International Discourse of Fuzzy Logic and the Management of Complexity, Sydney, 241-246.
33. Ciftcibasi, T., and Altunay, D. (1996a), “Two-sided (intuitionistic) fuzzy reasoning,” IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans 28(5), 662-677.
34. Ciftcibasi, T., and Altunay, D. (1996b), “Fuzzy propositional logic and two-sided (intuitionistic) fuzzy propositions,” Proceedings of 5th IEEE International Conference Fuzzy Systems New Orleans, LA, 432-438.
35. Clarke, K., and Belk, R. (1978), “The effects of product involvement and task definition on anticipated consumer effort,” Advances in Consumer Research 5, 313-318.
36. Cohen, J.C. (1983), “Involvement and you: 1,000 great ideas,” Advances in Consumer Research 10, 325-328.
37. Cornelis, C., Deschrijver, G., and Kerre, E.E. (2004), “Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application,” International journal of Approximate Reasoning 35(1), 55-95.
38. Coupey, E. (1994), “Restructuring,” Journal of Consumer Research 21(1), 83-99.
39. Cox, D.F., and Rich, S.U. (1964), “Perceived risk and consumer decision making-the case of telephone shopping,” Journal of Marketing Research 1, 229-238.
40. Cox, D.F. (1967), “Risk handling in consumer behavior-an intensive study of two cases,” in Cox, D.F. (ed.), Risk Taking and Information Handling in Consumer Behavior, Boston: Harvard University Press, 34-81.
41. Cunningham, S.M. (1967), “The major dimensions of perceived risk,” in Cox, D.F. (ed.), Risk-taking and information-handling in consumer behavior, Boston: Harvard University Press, 82-108.
42. Dennis, H.G., and Rajshekhar, G.J. (1987), “The influence of involvement on disaggregate attribute choice models,” Journal of Consumer Research (14)1, 71-82.
43. Deschrijver, G., and Kerre, E.E. (2003), “On the representation between some extensions of fuzzy set theory,” Fuzzy Sets and Systems 133, 227-235.
44. Deschrijver, G., and Kerre, E.E. (2005), “Smets-magrez axioms for r-implicators in interval-valued and intuitionisitc fuzzy set theory,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 13(4), 453-464.
45. Dowling, G. R., and Stealin, R. (1994), “A model of perceived risk and intended risk-handling activity,” Journal of Consumer Research 21, 119-134.
46. Einhorn, H.J. (1970), “The use of nonlinear, noncompensatory models in decision making,” Psychological Bulletin 73, 221-230.
47. Flynn, L.R., and Goldsmith, R.E. (1993), “Application of the personal involvement inventory in marketing,” Psychology & Marketing 10(4), 357-366.
48. Fodor, J.C. (1995), “Contrapositive symmetry of fuzzy implications,” Fuzzy Sets and Systems 69, 141-156.
49. Gainer, B. (1993), “An empirical investigation of the role of involvement with a gendered product,” Psychology and Marketing 10(4), 265-283.
50. Gardner, M.P., Mitchell, A.A., and Russo, J.E. (1985), “Low involvement strategies for processing advertisements,” Journal of Advertising 14, 4-12.
51. Gorzalczany, M.B. (1987), “A method of inference in approximate reasoning based on interval-valued fuzzy sets,” Fuzzy Sets and Systems 21, 1-17.
52. Greenward, A.G., and Leavitt, C. (1984), “Audience involvement in advertising: four levels,” Journal of Consumer Research 11, 581-592.
53. Grether, D., and Wilde, L. (1984), “An analysis of conjunctive choice: theory and experiments,” Journal of Consumer Research 373-385.
54. Hanna, H., and Wozniak, R. (2001), Consumer Behavior: An Applied Approach, New Jersey: Prentice-Hall.
55. Hawkins, D.I., Best, R.J., and Coney, K.A. (2004), Consumer Behavior: Building Marketing Strategy, New York: McGraw-Hill/Irwin.
56. Hong, D.H, and Choi, C.H. (2000), “Multicriteria fuzzy decision-making problems based on vague set theory,” Fuzzy Sets and Systems 114(1), 103-113.
57. Hoyer, D.R., and Jeffries, S. (1982), “Low involvement decision processes: the importance of choice tactics,” in Bush, R.F., and Hunt, S.D. (eds.), Marketing Theory: Philosophy of Science Perspectives, Chicago: American Marketing Association, 155-158.
58. Hoyer, W.D., and Maclnnis, D.J. (2007), Consumer Behavior, 4th ed., Boston: Houghton Mifflin Company.
59. Hoyer, W.D. (1984), “An examination of consumer decision making for a common repeat purchase product,” Journal of Consumer Research 11, 822-829.
60. Houston, M.J., and Rothschild, M.L. (1978), “Conceptual and methodological perspective in involvement,” Research Frontiers in Marketing: Dialogues and Directions, 184-187.
61. Jacoby, S.L., and Kaplan, M.L. (1972), “The components of perceived risk,” In Venkatesan, M. (ed.), Proceedings, 3rd Annual Conference, Chicago: Association for Consumer Research, 382-393.
62. Jae, H., and Delvecchio, D. (2004), “Decision making by low-literacy consumers in the presence of point-of-purchase information,” The Journal of Consumer Affairs 38(2), 342-254.
63. Kaplan, L.B. (1974), “Components of perceived risk in product purchase: A cross-validation,” Journal of Applied Psychology 59(3), 287-291.
64. Kardes, F.R. (1999), Consumer Behavior and Managerial Decision Making, New York: Addison-Wesley.
65. Klein, N., and Bither, S.W. (1987), “An investigation of utility-directed cutoff selection,” Journal of Consumer Research 14, 240-256.
66. Klir, G.J., and Yuan, B. (1995), Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, Upper Saddle River, New Jersey.
67. Kolter, P., and Keller, K.L. (2006), Marketing Management, 12th ed., New Jersey: Prentice Hall.
68. Krugman, H.E. (1965), “The impact of television advertising: learning without involvement,” Public Opinion Quarterly, 349-356.
69. Lamb, C.W., Hair, J.F., and McDaniel, C. (1998), Marketing, Ohio: South-Western College Publishing.
70. Lastovicka, J.L., and Gardner, D.M. (1979), “Components of involvement,” in John C. Maloney and Benard Silverm (ed.), Attitude Research Plays for High Stakes, Chicago: American Marketing Association, 53-73.
71. Laurent, G., and Kapferer, J.N. (1985), “Measuring consumer involvement profiles,” Journal of Marketing Research 22, 41-53.
72. Laurent, G., and Kapferer, N.J. (1993), “Further evidence on the consumer involvement profile: five antecedents of involvement,” Psychology and Marketing 10, 347-355.
73. Li, Y., Olson, D.L., and Qin, Z. (2007), “Similarity measures between intuitionistic fuzzy (vague) sets: a comparative analysis,” Pattern Recognition Letters 28, 278-285.
74. Lin, Y.H. (2007), “The methodology fuzzy theory in social science research,” Journal of Quantitative Research 1(1), 53-84.
75. Lin, L., and Yuan, X.H. (2007), “A method of intuitionisitc fuzzy reasoning based on inclusion degree and similarity measure,” Proceedings of the Second International Conference of Fuzzy Information and Engineering (ICFIE), 315-322.
76. Liu, H.W., and Wang, G.J. (2007), “Multi-criteria decision-making methods based on intuitionistic fuzzy sets,” European Journal of Operational Research 179(1), 220-233.
77. Mesarovic, M.D., and Tahhara, Y. (1989), Abstracts systems theory, Berlin: Springer-Verlag.
78. Mitcheel, V.W., and Waish, G. (2004), “Gender differences in German consumer decision-making styles,” Journal of Consumer Behaviour 3(4), 331-346.
79. Mitchell, A. (1981), “The dimensions of advertising involvement,” Advances in Consumer Research 8, 25-30.
80. Mittal, M. (1989), “Measuring purchase-decision involvement,” Psychology & Marketing 6(2), 147-162.
81. Nguyen, J.C., and Wu, B. (2006), Fundamentals of Statistics with Fuzzy Data, New York: Springer.
82. O’Cass, A. (2000), “An assessment of consumers product, purchase decision, advertising and consumption involvement in fashion clothing,” Journal of Economic Psychology 21, 545-576.
83. Perry, M., and Hamm, C.B. (1969), “Canonical analysis of relations between social economic risk and personal influence in purchase decisions,” Journal of Marketing Research 6, 351-354.
84. Peter, J.P., and Tarpey, L.X. (1975), “A comparative analysis of three consumer decision strategies,” Journal of Consumer Research 2, 29-37.
85. Peter, J.P., and Olson, J.C. (1999), Consumer Behavior and Marketing Strategy, 5th ed., Boston: Irwin/McGraw-Hill.
86. Radeva, V.V., Atanassov, K.T., Kim, S.K., and Chang, O.B. (1999), “On generalized net-models of intuitionistic fuzzy abstract system,” Proceedings of 1999 IEEE International Fuzzy Systems Conference 2, 1039-1044.
87. Ragin, C.C. (2000), Fuzzy Set Social Science, Chicago: The University of Chicago.
88. Richins, M.L., and Bloch, P.H. (1986), “After the new wears off: the temporal context of product involvement,” Journal of Consumer Research 13, 280-285.
89. Rodgers, W.C., and Schneider, K.C. (1993), “An empirical evaluation of the Kapferer-Laurent consumer involvement profile scale,” Psychology and Marketing 10(4), 333-345.
90. Roselius, T. (1971), “Consumer ranking of risk reduction methods,” Journal of Advertising Research 35, 56-61.
91. Rothschild, M.L. (1984), “Perspectives in involvement: current problem and future directions,” Advances in Consumer Research 11, 216-217.
92. Russo, J.E. and Lecleric, F. (1994), “An eye-fixation analysis of choice processes for consumer nondurables,” Journal of Consumer Research 21(2), 274-290.
93. Salam, A.M.N. (1998), Three Essays on Electronic Commerce: WWW Information Content, Internet Involvement and Perceived Risk, P.H.D. of the Faculty of the Graduate School of State University of New York at Buffalo.
94. Schiffman, L.G., and Kanuk, L.L. (2007), Consumer Behavior, 9th ed., New Jersey: Pearson Prentice Hall.
95. Sheth, J.N. (1971), Canonical Analysis of Attitude-Behavior Relationships, Paper presented at 18th International Meeting of Institute of Management Science, Washington, D.C.
96. Sheth, J.N., Mittal, B., and Newman, B.I. (1999), Customer Behavior: Consumer Behavior and Beyond, Orlando: The Dryden Press.
97. Sherif, M., and Cantril, H. (1947), The Psychology of Ego-Involvement, New York: John Wiley and Sons.
98. Shi, Y., Ruan, D., and Kerre, E.E. (2007), “On the characterizations of fuzzy implications satisfying I(x, y) = I(x, I(x, y)),” Information Sciences 177(14), 2954-2970.
99. Solomon, M.R. (2007), Consumer Behavior: Buying, Having, and Being, 7th ed., New Jersey: Pearson Prentice Hall.
100. Stamenov, A. (2004), “A property of the extended intuitionistic fuzzy modal operator Fα,β,” Proceedings of 2th IEEE International Conference on Intelligent Systems, 16-17.
101. Stone, R.N., and Gronhaung, K. (1993), “Perceived risk: further consideration for the marketing discipline,” European Journal of Marketing 27, 39-50.
102. Swinyard, W.R. (1993), “The effects of mood, involvement, and quality of store experience on shopping intention,” Journal of Consumer research 20, 271-280.
103. Tversky, A. (1969), “Intransitivity of preferences,” Psychological Review, 31-48.
104. Tversky, A. (1972), “Elimination by aspects: a theory of choice,” Psychological Review, 281-299.
105. Waish, D.G., Hennig-Thurau, T., Wayne-Mitchell, V., and Wiedmann, K.P. (2001), “Consumers' decision-making style as a basis for market segmentation,” Journal of Targeting, Measurement and Analysis for Marketing 10(2), 117-131.
106. Warrington, P., and Shim, S. (2000), “An empirical investigation of the relationship between product involvement and brand commitment,” Pshchology & Marketing 17(9), 761-782.
107. Well, W.D., and Prensky, D. (1996), Consumer Behavior, New York: John Wiley & Sons.
108. Wilkie, W.L., and Pessemier, E.A. (1973), “Issues in marketing’s use of multiattribute models,” Journal of Marketing Research 10(4), 428-441
109. Wright, P. (1975), “Consumer choice strategies: simplifying vs. optimizing,” Journal of Marketing Research 12, 60-67.
110. Yavas, U., and Babakus, E. (1995), “Purchasing involvement in Saudi Arabia: measure development and validation,” Journal of International Consumer Marketing 8(1), 23-41.
111. You, Z.Y. (1983), “Methods for constructing triangular norms,” Fuzzy Mathematics 3(1), 11-18.
112. Zadeh, L.A. (1965), “Fuzzy sets,” Information and Control 8, 338–356.
113. Zaichkowsky, J.L. (1985), “Measuring the involvement construct,” Journal of Consumer Research 12, 341-352.
114. Zaichkowsky, J.L. (1986), “Conceptualizing involvement,” Journal of Advertising 15(2), 4-14.
115. Zaichkowsky, J.L., and Sood, J.H. (1988), “A global look at consumer involvement and use of products,” International Marketing Review 6, 20-34.
116. Zaichkowsky, J.L. (1994). “The personal involvement inventory: reduction, revision, and application to advertising,” Journal of Advertising 23(4), 59-70.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top