跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/15 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姜吉泰
研究生(外文):Chi Tai Chiang
論文名稱:ΔNp63促進鼻咽癌細胞株NPC-076之增生與其向下調控CKIs有關
論文名稱(外文):Stimulation of the growth of a human nasopharyngeal carcinoma cell line by ΔNp63 is correlated with downregulation of CKIs
指導教授:陳君侃陳君侃引用關係
指導教授(外文):J. K. Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:61
中文關鍵詞:ΔNp63NPCCKIs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
p63是腫瘤抑制蛋白p53的家族成員之一。由於使用不同的基因啟動子,ΔNp63異構物缺乏N端轉移活化區之結構,因而被認為在細胞週期與細胞凋亡的調控當中與p53及TAp63扮演相反的角色。研究上發現,ΔNp63在許多種類的人類鱗狀細胞癌有過度表現的情形,其中包括了鼻咽癌(NPC)。然而,ΔNp63的過度表現與鼻咽癌致病過程的關係並不清楚。在此研究中,我們使用過度表現ΔNp63的人類鼻咽癌細胞株NPC-076,嘗試去了解ΔNp63的表現在鼻咽癌細胞的增生及調控細胞週期的過程中可能扮演的角色。我們發現藉由專一性的小干擾RNA(ΔNp63 siRNA)抑制NPC-076細胞中過度表現的ΔNp63,則導致細胞增生的幅度明顯地減少。進一步的研究發現,抑制NPC-076細胞株ΔNp63的表現,會導致p27Kip1與p57Kip2兩種細胞週期依賴酶抑制劑(CKIs)分別在mRNA及蛋白質層次的上調。分析細胞週期,發現抑制ΔNp63的表現促使細胞停滯在G1階段,並導致細胞凋亡。同時,在細胞移動力分析的實驗當中,顯現出ΔNp63表現受到抑制的細胞,其移動力會明顯地降低。我們的發現說明了ΔNp63對於NPC-076細胞週期,以及細胞移動力的調控扮演了重要的角色。同時,ΔNp63在NPC-076腫瘤細胞表現型的維持上也具有重要的影響。
p63 is a member of the tumor suppressor protein p53 family. Due to alternative promoter usage, ΔNp63 isoform lacks the N-terminal transactivation domain and is thought to antagonize TAp63 and p53 in target gene regulation and cell growth suppression. ΔNp63 has been found to be overexpressed in numerous human squamous cell carcinomas, including nasopharyngeal carcinoma (NPC). However, the role of ΔNp63 overexpression and NPC pathogenesis has not been fully explored. In this study, we use a ΔNp63 overexpressing human NPC cell line (NPC-076) to explore the possible roles of ΔNp63 in cell proliferation and cell cycle regulation. We found that NPC-076 cell proliferation is greatly suppressed when the overexpressed ΔNp63 is silenced by specific ΔNp63 siRNA. Further studies show that ΔNp63 silencing results in the upregulation of CKIs, including p27kip1 and p57kip2 in both mRNA and protein levels. Cell cycle analysis shows that ΔNp63 silencing also results in increased cell cycle arrest at G1 phase and apoptosis. In a scratch wound cell mobility assay, we also show that cell migration ability was dramatically reduced in ΔNp63 silenced cells. Our findings indicate that ΔNp63 plays important roles in the regulation of NPC-076 cell cycle progression and cell mobility, and may play a pivotal role in the maintenance of NPC-076 tumor cell phenotype.
指導教授推薦書
口試委員會審定書
授權書...................................................iii
誌謝......................................................iv
中文摘要....................................................v
Abstract..................................................vi
Introduction...............................................1
Specific Aims..............................................8
Materials and Methods......................................9
Results...................................................16
Discussion................................................20
Conclusion................................................25
References................................................26
Figures
Functional domain of p53 and p63 protein structure....38
Mechanism of RNA interference.........................39
ΔNp63 is overexpressed in NPC-076 cancer cell line....41
RT-PCR shows that endogenous ΔNp63 of NPC-076 was
effectively silenced by ΔNp63 siRNA...................42
Western blot analysis shows that ΔNp63 siRNA
specifically knockdown the expression of ΔNp63 protein
in NPC-076 cells......................................43
ΔNp63 silencing affects the growth rate of NPC-076
cells.................................................44
Regulation of cell cycle by ΔNp63.....................45
Knockdown of the endogenous ΔNp63 results in
upregulation of CDK Inhibitors p27Kip1 and p57Kip2....46
Knockdown of the endogenous ΔNp63 induces NPC-076 cell
apoptosis.............................................48
Knockdown of ΔNp63 expression inhibits the migration of
the NPC-076 cells.....................................49
Tables
Primers used for RT-PCR...............................51
PCR program...........................................52
1. Yu MC, Yuan JM: Epidemiology of nasopharyngeal carcinoma. Semin. Cancer Biol. 2002, 12; 421–429.
2. Cho WC: Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Molecular Cancer 2007, 6:1.
3. Yu MC, Ho JH, Lai SH, Henderson BE: Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a casecontrol study in Hong Kong. Cancer Res 1986, 46:956-961.
4. de-Vathaire F, Sancho-Garnier H, de-Thé H, Pieddeloup C, Schwaab G, Ho JH, Ellouz R, Micheau C, Cammoun M, Cachin Y, et al.: Prognostic value of EBV markers in the clinical management of nasopharyngeal carcinoma (NPC): a multicenter follow-up study. Int J Cancer 1988, 42:176-181.
5. Chan SH, Day NE, Kunaratnam N, Chia KB, Simons MJ: HLA and nasopharyngeal carcinoma in Chinese – a further study. Int J Cancer 1983, 32:171-176.
6. Porter MJ, Field JK, Lee JC, Leung SF, Lo D, Van Hasselt CA: Detection of the tumour suppressor gene p53 in nasopharyngeal carcinoma in Hong Kong Chinese. Cancer Res 1994, 14:1357-1360.
7. Lo KW, Tsao SW, Leung SF, Choi PHK, Lee JCK, Huang DP: Detailed deletion mapping on the short arm of chromosome 3 in nasopharyngeal carcinomas. Int J Oncol 1994, 4:1359-1364.
8. Huang DP, Lo KW, van Hasselt CA, Woo JK, Choi PH, Leung SF, Cheung ST, Cairns P, Sidransky D, Lee JC: A region of homozygous deletion on chromosome 9p21-22 in primary nasopharyngeal carcinoma. Cancer Res 1994, 54:4003-4006.
9. Chien YC, Chen JY, Liu MY, Yang HI, Hsu MM, Chen CJ, Yang CS: Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 2001, 345:1877-1882.
10. Shanmugaratnam KS, Sobin LH: Histological typing of upper respiratory tract tumors Geneva. World Health Organization 1978.
11. Neel HB, Pearson GR, Taylor WF: Antibodies to Epstein-Barr virus in patients with nasopharyngeal carcinoma and in comparison groups. Ann Otol Rhinol Laryngol 1984, 93:477-482.
12. Brennan B: Nasopharyngeal carcinoma. Orphanet Journal of Rare Diseases 2006, 1:23.
13. Wei WI, Sham JS: Nasopharyngeal carcinoma. Lancet 2005, 365: 2041–54.
14. Liu FF: Novel gene therapy approach for nasopharyngeal carcinoma. Semin Cancer Biol. 2002, 12: 505–515.
15. Harris CC, Hollstein M: Clinical implications of the p53 tumor suppressor gene. N Engl J Med 1993, 329(18):1318-1327.
16. Ahomadegbe JC, Barrois M, Fogel S, Le Bihan ML, Douc-Rasy S, Duvillard P, Armand JP, Riou G: High incidence of p53 alterations (mutation, deletion, overexpression) in head and neck primary tumors and metastases; absence of correlation with clinical outcome. Frequent protein overexpression in normal epithelium and in early non-invasive lesions. Oncogene 1995, 10(6):1217-1227.
17. Spruck CH, Tsai YC, Huang DP, Yang AS, Rideout WM, Gonzalez-Zulueta M, Choi P, Lo KW, Yu MC, Jones PA: Absence of p53 gene mutations in primary nasopharyngeal carcinomas. Cancer Res 1992, 52(17): 4787-4790.
18. Lo KW, Mok CH, Huang DP, Liu YX, Choi PH, Lee JC, Tsao SW: p53 mutation in human nasopharyngeal carcinomas. Anticancer Res 1992, 12(6B):1957-1963.
19. Sun Y, Hegamyer G, Cheng YJ, Hildesheim A, Chen JY, Chen IH, Cao Y, Yao KT, Colburn NH: An infrequent point mutation of the p53 gene in human nasopharyngeal carcinoma. Proc Natl Acad Sci U S A 1992, 89(14):6516-6520.
20. Porter MJ, Field JK, Lee JC, Leung SF, Lo D, Van Hasselt CA: Detection of the tumour suppressor gene p53 in nasopharyngeal carcinoma in Hong Kong Chinese. Anticancer Res. 1994, 14(3B):1357-60.
21. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F: p63, a p53 homolog at 3q27- 29, encodes multiple products with transactivating, death inducing, and dominant-negative activities. Mol. Cell 1998, 2: 305-316.
22. Augustin M, Bamberger C, Paul D, Schmale H: Cloning and chromosomal mapping of the human p53-related KET gene to chromosome 3q27 and its murine homolog Ket to mouse chromosome 16. Mamm. Genome 1998, 9(11):899 - 902.
23. Trink B, Okami K, Wu L, Sriuranpong V, Jen J, Sidransky D: A new human p53 homologue. Nature Med. 1998, 4: 747-748.
24. Westfall M.D., Mays D.J., Sniezek J.C., Pietenpol J.A.: The ΔNp63 alpha phosphoprotein binds the p21 and 14-3-3s promoters in vivo and has transcriptional repressor activity that is reduced by Hay–Wells syndrome-derived mutations. Mol. Cell. Biol. 2003, 23; 2264–2276.
25. Flores E.R., Tsai K.Y., Crowley D, Sengupta S., Yang A., McKeon F., Jacks T.: p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 2002, 416; 560–564.
26. Christopher EB, Jennifer AP: p63 And Epithelial Biology. Exp Cell Res. 2006, 1; 312(6):695-706.
27. Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, McKeon F, Caput D: p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 2000, 404:99-103.
28. Dohn M, Zhang S, Chen X: p63α and ΔNp63α can induce cell cycle arrest and apoptosis differentially regulate p53 target genes. Oncogene 2001, 20:3193-3205
29. Bénard J, Douc-Rasy S, Ahomadegbe JC: TP53 family members and human cancers. Hum Mutat 2003, 21: 182–191.
30. Wu G, Nomoto S, Hoque MO, Dracheva T, Osada M, Lee CC, Dong SM, Guo Z, Benoit N, Cohen Y, Rechthand P, Califano J, Moon CS, Ratovitski E, Jen J, Sidransky D, Trink B: DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res 2003, 63(10):2351-2357.
31. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A: p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999, 398:708-713.
32. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F: p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999, 398(6729):714-8.
33. Koster M.I., Kim S., Mills A.A., DeMayo F.J., Roop D.R.: p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev. 2004, 18; 126–131.
34. Lee H., Kimelman D.: A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev. Cell 2002, 2; 607–616.
35. Bakkers J., Hild M., Kramer C., Furutani-Seiki M., Hammerschmidt M.: Zebrafish DeltaNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev. Cell 2002, 2; 617-627.
36. Carroll DK, Carroll JS, Leong CO, Cheng F, Brown M, Mills AA, Brugge JS, Ellisen LW: p63 regulates an adhesion programmed and cell survival in epithelial cells. Nature Cell Biology 2006, 8(6):551-561.
37. L Boldrup, PJ Coates, X Gu and K Nylander: ΔNp63 isoforms regulate CD44 and keratins 4, 6, 14 and 19 in squamous cell carcinoma of head and neck. Journal of Pathology 2007, 213(4): 384-391.
38. CE Barbieri, LJ Tang, KA Brown, JA Pietenpol: Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res. 2006, 1;66(15):7589-97.
39. Thurfjell N, Coates PJ, Uusitalo T, Mahani D, Dabelsteen E, Dahlqvist A, Sjostrom B, Roos G and Nylander K: Complex p63 mRNA isoform expression patterns in squamous cell carcinoma of the head and neck. Int J Oncol 2004, 25:27-35.
40. Park BJ, Lee SJ, Kim JI, Lee SJ, Lee CH, Chang SG, Park JH, Chi SG: Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res. 2000, 60:3370–3374.
41. Tanière P, Martel-Planche G, Saurin JC, Lombard-Bohas C, Berger F, Scoazec JY, Hainaut P: TP53 mutations, amplification of P63 and expression of cell cycle proteins in squamous cell carcinoma of the oesophagus from a lowincidence area in Western Europe. British Journal of Cancer 2001, 85(5):721–726.
42. Massion PP, Taflan PM, Jamshedur Rahman SM, Yildiz P, Shyr Y, Edgerton ME, Westfall MD, Roberts JR, Pietenpol JA, Carbone DP, Gonzalez AL: Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res. 2003, 63: 7113–7121.
43. Fang WY, Liu TF, Xie WB, Yang XY, Wang S, Ren CP, Deng X, Liu QZ, Huang ZX, Li X, Ding YQ, Yao KT: Reexploring the possible roles of some genes associated with nasopharyngeal carcinoma using microarray-based detection. Acta Biochimica et Biophysica Sinica 2005, 37(8): 541–546.
44. Crook T, Nicholls JM, Brooks L, O'Nions J, Allday MJ: High level expression of deltaN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene 2000, 19:3439–3444.
45. Thurfjell N, Coates PJ, Vojtesek B, Benham-Motlagh P, Eisold M, Nylander K: Endogenous p63 acts as a survival factor for tumour cells of SCCHN origin. International Journal of Molecular Medician 2005, 16:1065-1070.
46. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391; 806–811.
47. Zamore PD, Tuschl T, Sharp PA, Bartel DP: RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101; 25–33.
48. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411; 494–498.
49. Hunter, T. and Pines, J: Cyclins and cancer II: cyclin D and CDK inhibitors come of age. Cell 1994, 79: 573-582
50. Cordon-Cardo, C: Mutation of cell cycle regulators: biological and clinical implications for human neoplasia. Am. J. Pathol. 1995, 147: 545-560
51. MacLachlan, TK, Sang, N and Giordano, A: Cyclins, cyclin-dependent kinase and Cdk inbihitors: implications in cell cycle control and cancer. Crit. Rev. Eukaryotic Gene Expr. 1995, 5: 127-156
52. Watanabe N, Arai H, Iwasaki J, Shiina M, Ogata K, Hunter T, Osada H: Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways. Proc Natl Acad Sci U S A. 2005, 16; 102(33):11663-8.
53. Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ: Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 1997, 5; 277(5331): 1497-501.
54. Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M: Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007; 10(1-2):13-29.
55. Nakayama K, Nakayama K: Cip/Kip cyclin-dependent kinase inhibitors: Brakes of the cell cycle engine during development. Bioessays 1998; 20:1020-9.
56. Sherr CJ, Roberts JM: CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev 1999; 13:1501-12.
57. Roussel MF: The INK4 family of cell cycle inhibitors in cancer. Oncogene 1999, 20; 18(38): 5311-7.
58. Vlachos P, Nyman U, Hajji N, Joseph B. The cell cycle inhibitor p57(Kip2) promotes cell death via the mitochondrial apoptotic pathway. Cell Death Differ. 2007, 14(8):1497-507.
59. Pateras IS, Apostolopoulou K, Koutsami M, Evangelou K, Tsantoulis P, Liloglou T, Nikolaidis G, Sigala F, Kittas C, Field JK, Kotsinas A, Gorgoulis VG. Downregulation of the KIP family members p27(KIP1) and p57(KIP2) by SKP2 and the role of methylation in p57(KIP2) inactivation in nonsmall cell lung cancer. Int J Cancer 2006, 1;119(11): 2546-56.
60. Rosenberg E, Demopoulos RI, Zeleniuch-Jacquotte A, Yee H, Sorich J, Speyer JL, Newcomb EW. Expression of cell cycle regulators p57(KIP2), cyclin D1, and cyclin E in epithelial ovarian tumors and survival. Hum Pathol. 2001, 32(8): 808-13.
61. Beretta C, Chiarelli A, Testoni B, Mantovani R, Guerrini L: Regulation of the Cyclin-Dependent Kinase Inhibitor p57Kip2 Expression by p63. Cell cycle 2005, 4(11):1625-31.
62. Niedobitek G: Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Mol Pathol 2000, 53(5):248-254.
63. Liebowitz D: Nasopharyngeal carcinoma: the Epstein-Barr virus association. Semin Oncol 1994, 21(3):376-381.
64. Raab-Traub N: Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol 2002, 12(6):431-441.
65. Kondo S, Wakisaka N, Schell MJ, Horikawa T, Sheen TS, Sato H, Furukawa M, Pagano JS, Yoshizaki T: Epstein-Barr virus latent membrane protein 1 induces the matrix metalloproteinase-1 promoter via an Ets binding site formed by a single nucleotide polymorphism: enhanced susceptibility to nasopharyngeal carcinoma. Int J Cancer 2005, 115(3):368-376.
66. Fahraeus R, Rymo L, Rhim JS, Klein G: Morphological transformation of human keratinocytes expressing the LMP gene of Epstein-Barr virus. Nature 1990, 345(6274):447-449.
67. Tsao SW, Tramoutanis G, Dawson CW, Lo AK, Huang DP: The significance of LMP1 expression in nasopharyngeal carcinoma. Semin Cancer Biol 2002, 12(6):473-487.
68. Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E: The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 1995, 80(3):389-399.
69. Mei YP, Zhou JM, Wang Y, Huang H, Deng R, Feng GK, Zeng YX, Zhu XF: Silencing of LMP1 Induces Cell Cycle Arrest and Enhances Chemosensitivity Through Inhibition of AKT Signaling Pathway in EBV-Positive Nasopharyngeal Carcinoma Cells. Cell Cycle 2007, 6(11).
70. Li X, Liu X, Li CY, Ding Y, Chau D, Li G, Kung HF, Lin MC, Peng Y: Recombinant adeno-associated virus mediated RNA interference inhibits metastasis of nasopharyngeal cancer cells in vivo and in vitro by suppression of Epstein-Barr virus encoded LMP-1. Int J Oncol. 2006, 29(3):595-603.
71. Lin CT, Wong CI, Chan WY, Tzung KW, Ho JK, Hsu MM, Chuang SM: Establishment and characterization of two nasopharyngeal carcinoma cell lines. Lab Invest. 1990, 62(6):713-24.
72. Zhang H, Tsao SW, Jin C, Strömbeck B, Yuen PW, Kwong YL, Jin Y. Sequential cytogenetic and molecular cytogenetic characterization of an SV40T-immortalized nasopharyngeal cell line transformed by Epstein–Barr virus latent membrane protein-1 gene. Cancer Genet Cytogenet 2004, 150:144–152.
73. Tsao SW, Wang X, Liu Y, Cheung YC, Feng H, Zheng Z, Wong N, Yuen PW, Lo AK, Wong YC, Huang DP: Establishment of two immortalized nasopharyngeal epithelial cell lines using SV40 large T and HPV16E6/E7 viral oncogenes. Biochim Biophys Acta 2002, 1590:150–158.
74. Chang US, Lin SU, Lee PF, Tim Durff, Chung HC, and Tsai MS: Establishment and Characterization of a Tumor Cell Line from Human Nasopharyngeal Carcinoma Tissue. Cancer Reserch 1989, 49: 6752-6757.
75. Liao SK, Perng YP, Shen YC, Chung PJ, Chang YS, and Wang CH: Chromosomal Abnormalities of a New Nasopharyngeal Carcinoma Cell Line (NPC-BM1) Derived from a Bone Marrow Metastatic Lesion. Cancer Genet Cytogenet 1998, 103: 52–58.
76. Ku WC, Cheng AJ, Wang TC: Inhibition of telomerase activity by PKC inhibitors in human nasopharyngeal cancer cells in culture. Biochem. Biophys. Res. Commun. 1997, 241:730–736.
77. Lou PJ, Chen WP, Lin C-T, Robert M. DePhilip, and Wu CJ: E-, P-, and N-Cadherin Are Co-expressed in the Nasopharyngeal Carcinoma Cell Line TW-039. Journal of Cellular Biochemistry 1999, 76:161–172.
78. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P et al.: Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994, 78: 59–66.
79. Oya M. and Schulz WA: Decreased expression of p57(KIP2) mRNA in human bladder cancer. Br. J. Cancer 2000, 83: 626–631.
80. Shin JY, Kim HS, Lee KS, Kim J, Park JB, Won MH: Mutation and expression of the p27KIP1 and p57KIP2 genes in human gastric cancer. Exp. Mol. Med. 2000, 32: 79–83.
81. Gu X, Coates PJ, Boldrup L, Nylander K: p63 contributes to cell invasion and migration in squamous cell carcinoma of the head and neck. Cancer Lett. 2008 , 8;263(1):26-34.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top