跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/13 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江孟潔
研究生(外文):Meng-Chieh Chiang
論文名稱:脊髓小腦共濟失調症患者之感覺輸入引發大腦皮質興奮調節能力的研究
論文名稱(外文):The Modulation on cortical excitability to the Sensory Input in Patient with Spinocerebellar Ataxia
指導教授:張雅如張雅如引用關係
指導教授(外文):Y. J. Chang
學位類別:碩士
校院名稱:長庚大學
系所名稱:復健科學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:171
中文關鍵詞:脊髓小腦共濟失調症動作誘發電位大腦皮質內抑制大腦皮質內興奮感覺輸入低頻電刺激高頻電刺激
外文關鍵詞:Spinocerebellar Ataxiamotor evoked potentialintracortical inhibitionintracortical facilitationsensory inputlow frequency electrical stimulationhigh frequency electrical stimulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:脊髓小腦共濟失調症(Spinocerebellar Ataxia, SCA)為一種遺傳的漸進小腦失去功能的疾病。過去的研究顯示,正常小腦對大腦有興奮性的輸出,當基因異常造成小腦神經元衰亡而逐漸失去功能,會使大腦皮質的興奮性改變。利用經顱磁場磁刺激(transcranial magnetic stimulation, TMS)測量,發現脊髓小腦共濟失調患者的大腦皮質內興奮性(intracortical facilitation, ICF)較健康受測者少。過去的研究指出,低頻電刺激可增加大腦皮質脊髓徑的興奮性;而高頻電刺激的作用則是相反,但這些調控是否可以改變大腦皮質內抑制和興奮仍未知,與動作協調不良(incoordination)、低張(hypotone)等症狀的相關性仍屬未知。
目的:主要為探討低頻和高頻電刺激,對於健康成年人與脊髓小腦共濟失調症患者的大腦皮質內興奮和抑制調控的差異,以及和臨床症狀的相關性。
方法: 20位脊髓小腦共濟失調症患者與20位年齡相符的健康受測者參與本研究。兩組的受測者於至少間隔一星期的時間,接受低頻和高頻電刺激30分鐘,並於電刺激前、後、休息30及60分鐘測量最大M波、動作誘發電位、大腦皮質內興奮性與抑制性強度,與動作協調、肌肉張力與肌力等上肢功能性評估。本研究使用雙因子重複量數變異數分析法(Two-way Repeated Measurement of ANOVA)分析兩組受測者在電刺激前後動作誘發電位、大腦皮質內抑制性和興奮性;使用皮爾森相關(Pearson correlation)檢測動作誘發電位、大腦皮質內興奮及抑制性強度改變和功能性評估結果之相關性。
結果:脊髓小腦共濟失調症患者的大腦皮質內興奮較健康受測者低;低頻電刺激後,健康受測者和脊髓小腦共濟失調症患者的標準化動作誘發電位增加,大腦皮質內抑制無顯著變化,健康受測者的大腦皮質內興奮減少,但脊髓小腦共濟失調症患者的大腦皮質內興奮無顯著變化;高頻電刺激後,兩組的標準化動作誘發電位減少,大腦皮質內抑制減少,大腦皮質內興奮增加。大腦皮質內興奮和手對鼻測試及滑鼠移動有弱相關性,但和肌肉張力無相關性。
討論:低頻和高頻電刺激可能分別抑制與促進GABAA受器的活化,而使動作誘發電位和大腦皮質內抑制改變;高頻電刺激可能促進NMDA受器的活化而使大腦皮質內興奮增加。高頻電刺激可改善脊髓小腦共濟失調症患者大腦皮質內興奮較低的情況,未來可能探討藉由高頻電刺激改善患者大腦皮質興奮較低和協調不良症狀的情形。
Background: Spinocerebellar Ataxia (SCA) is an inherited disease which the cerebellum loses its function gradually. The previous studies show that the motor cortex receives excitatory input from cerebellar nuclei. When the functions of cerebellar nuclei impaired due to genetic deficits, changes of cortical excitability might present. Studies using transcranial magnetic stimulation (TMS) found that the intracortical facilitation (ICF) decreased in individuals with SCA. Previous studies showed that the cortical excitability can be modulated with peripheral nerve electrical stimulation (ES). The low frequency ES can increase the excitability of cortico-spinal tract; whereas, the effect of the high frequency ES can decrease the excitability of cortico-spinal tract. Whether the intracortical inhibition (ICI), intracortical facilitation (ICF) can be modulated by peripheral nerve electrical stimulation is unknown. The relation between the cortical excitability and the clinical symptoms is still unknown.
Purpose: The first purpose of this study is to investigate the effect of low and high frequency electrical stimulation on modulation of cortical excitability in individuals with and without SCA. The second purpose of this study is to investigate the correlation of the cortical excitability and the severity of clinical symptoms.
Methods: Twenty individuals with SCA and twenty age-matched healthy subjects participated in this study. All subjects received low and high frequency electrical stimulation for 30 minutes at two consecutive weeks. The Mmax-wave, motor evoked potential (MEP), intracortical inhibition and facilitation (ICI and ICF) were measured before, after ES, 30 and 60 minutes later. Clinical symptoms will also be evaluated. Two-way repeated measurement of analysis of variance (ANOVA) was used to determine the difference of cortical excitability changes in two groups before and after ES. Pearson correlation was used to determine the correlation between the cortical excitability changes and the severity of clinical symptoms.
Results: The ICF in individuals with SCA is lower than healthy subjects. After low frequency ES, the MEP increased, the ICI unchanged in individuals with SCA and healthy subjects. The ICF decreased after low frequency ES in healthy subjects, but not in individuals with SCA. After high frequency ES, the MEP decreased, the ICI decreased and the ICF increased in both groups. ICF show weak correlation with finger-to-nose test and mouse movement, but not the muscle tone.
Discussion: The low and high frequency ES may change the MEP and ICI by inhibiting or facilitating the activity of the GABAA receptors. The high frequency ES may increase the ICF by facilitating the NMDA receptors. The high frequency ES can be used to improve the symptoms, such as incoordination in the individuals with SCA by increasing the intracortical facilitation.
目錄
指導教授推薦書
論文口試委員會審定書
長庚大學授權書
誌謝……………………………………………………………………..iii
中文摘要………………………………………………………………..iv
英文摘要………………………………………………………………..vi
目錄…………………………………………………………………….viii
表目錄………………………………………………………………… xiii
圖目錄………………………………………………………………......xv
第一章 緒論……………………………………………………………1
1.1 研究背景與動機………………………………………………….....1
1.2 研究目的…………………………………………………………….6
1.3 研究假設…………………………………………………………….7
1.4 重要性……………………………………………………………….8
1.5 名詞解釋及操作型定義…………………………………………….9
第二章 文獻回顧……………………………………………………..12
2.1 脊髓小腦共濟失調症分類、病因…………………………………12
2.2 小腦的重要性、功能和小腦失能症狀……………………………13
2.3 輸入及輸出路徑和症狀相關連結………………...………………14
2.4 大腦皮質興奮性測量及代表意義………………………………...16
2.4.1 單一磁場磁刺激的參數以及相關機制…………………………18
2.4.2 脊髓小腦共濟失調症患者在單一磁場磁刺激的參數變化……18
2.4.3 成對磁場磁刺激及其相關機制以及相關機制…………………20
2.4.4 脊髓小腦共濟失調症患者在成對磁場磁刺激的參數變化……22
2.5 周邊神經刺激對於中樞神經興奮性的調控……………………...23
2.6 脊髓小腦共濟失調症患者治療與臨床上症狀評估……………...27
第三章 研究方法與步驟……………………………………………..29
3.1 研究對象...........................................................................................29
3.2實驗儀器與設備.................................................................................30
3.3實驗設計.............................................................................................34
3.4實驗步驟.............................................................................................35
3.5 資料處理與分析...............................................................................39
3.5.1 大腦皮質興奮性............................................................................39
3.5.2 臨床症狀評估................................................................................41
3.6 統計方法...........................................................................................42
第四章 結果..........................................................................................47
4.1電刺激前,年齡相符的健康受測者和脊髓小腦共濟失調症患者的大腦皮質內抑制(ICI2、ICI3、ICI150、ICI200、ICI300)和興奮(ICF10、ICF13、ICF 16、ICF30)比較………………………………………….47
4.2 低頻電刺激介入後年齡相符的健康受測者和脊髓小腦共濟失調症患者的標準化動作誘發電位變化…………………………………48
4.3低頻電刺激介入後,年齡相符的健康受測者和脊髓小腦共濟失調症患者的大腦皮質內抑制與興奮性變化……………………………..49
4.3.1低頻電刺激介入後,短期大腦皮質內抑制(ICI2)變化………49
4.3.2低頻電刺激介入後,短期大腦皮質內抑制(ICI3)變化………50
4.3.3低頻電刺激介入後,短期大腦皮質內興奮(ICF10)變化…….50
4.3.4低頻電刺激介入後,短期大腦皮質內興奮(ICF13)變化…….51
4.3.5低頻電刺激介入後,短期大腦皮質內興奮(ICF16)變化…….52
4.3.6低頻電刺激介入後,長期大腦皮質內興奮(ICF30)變化…….53
4.3.7低頻電刺激介入後,長期大腦皮質內抑制(ICI150)變化……..54
4.3.8低頻電刺激介入後,長期大腦皮質內抑制(ICI200)變化…. …54
4.3.9低頻電刺激介入後,長期大腦皮質內抑制(ICI300)值變化….. 54
4.4高頻電刺激介入後年齡相符的健康受測者和脊髓小腦共濟失調症患者的標準化動作誘發電位變化……………………………………..55
4.5高頻電刺激介入後,年齡相符的健康受測者與脊髓小腦共濟失調症患者的大腦皮質內抑制與興奮性變化…………………………….56
4.5.1高頻電刺激介入後,短期大腦皮質內抑制(ICI2)變化……..56
4.5.2高頻電刺激介入後,短期大腦皮質內抑制(ICI3)變化………57
4.5.3高頻電刺激介入後,短期大腦皮質內興奮(ICF10)變化…….58
4.5.4高頻電刺激介入後,短期大腦皮質內興奮(ICF13)變化…….59
4.5.5高頻電刺激介入後,短期大腦皮質內興奮(ICF16)變化…….60
4.5.6高頻電刺激介入後,長期大腦皮質內興奮(ICF30)變化………61
4.5.7高頻電刺激介入後,長期大腦皮質內抑制(ICI150)變化……..61
4.5.8高頻電刺激介入後,長期大腦皮質內抑制(ICI200)變化……..62
4.5.9高頻電刺激介入後,長期大腦皮質內抑制(ICI300)值變化……63
4.6功能性測試和大腦皮質內抑制和興奮性的相關性……………….64
第五章 討論…………………………………………………………..98
5.1 結果與假設之支持與反對………………………………………...98
5.2脊髓小腦共濟失調症患者和年齡相符的健康受測者的大腦皮質內興奮的差異……………………………………………………………..99
5.3脊髓小腦共濟失調症患者和年齡相符的健康受測者的大腦皮質內興奮的差異……………………………………………………………102
5.4低頻電刺激對於動作誘發電位的效果和機制…………………..105
5.5低頻電刺激對於大腦皮質內抑制和興奮的機制………………..108
5.6高頻電刺激對於動作誘發電位的影響..........................................111
5.7高頻電刺激對於大腦皮質內抑制和興奮的影響..........................114
5.8相關性...............................................................................................118
5.9總結..................................................................................................121
5.10臨床意義與應用............................................................................123
5.11未來發展…………….....................................................................123
參考文獻................................................................................................124
附錄一、人體試驗委員會同意書..........................................................131
附錄二、受試者同意書..........................................................132
附錄三、前驅實驗-長期大腦皮質內抑制信度測量...........................136
附錄三、重複量測變異數分析之F表...................................................138

表目錄
表1.1 電刺激前、後,脊髓小腦共濟失調患者和健康受測者的大腦皮質興奮性差異及效果..............................................................................26
表3.1 受測者基本資料...........................................................................43
表4.1電刺激前,健康受測者和脊髓小腦共濟失調症患者的標準化動作誘發電位值與大腦皮質內抑制和興奮百分比(%)..........................66
表4.2低頻電刺激介入後,年齡相符的健康受測者和脊髓小腦共濟失調症患者在各測量時間點的標準化動作誘發電位(%)...................67
表4.3.1低頻電刺激介入後,年齡相符的健康受測者在各測量時間點的大腦皮質內抑制及興奮百分比(%)..............................................68
表4.3.2低頻電刺激介入後,脊髓小腦共濟失調症患者在各測量時間點的大腦皮質內抑制和興奮百分比(%)..........................................69
表4.4 高頻電刺激介入後,年齡相符的健康受測者和脊髓小腦共濟失調症患者在各測量時間點的標準化動作誘發電位(%)....................70
表4.5.1高頻電刺激介入後,年齡相符的健康受測者在各測量時間點的大腦皮質內抑制和興奮百分比(%)..............................................71
表4.5.2高頻電刺激介入後,脊髓小腦共濟失調症患者在各測量時間點的大腦皮質內抑制和興奮百分比(%)..............................................72
表4.6.1脊髓小腦共濟失調症患者和健康受測者功能性評估的結果.73
表4.6.2脊髓小腦共濟失調症患者和健康受測者滑鼠測試各方項的參數(平均值±標準差)…………………………………………………74.


圖目錄
【圖2.1】小腦傳入與傳出的路徑圖.......................................................16
【圖3.1】受測者坐姿與擺位................................................................44
【圖3.2】 表面肌電圖電極位置及週邊神經電刺激電極位置..........45
【圖3.3】實驗流程圖............................................................................46
【圖4.1.1】一位健康受測者接受電刺激前後的動作誘發電位變化...75
【圖4.1.2】一位脊髓小腦共濟失調症患者接受電刺激前後的動作誘發電位變化..............................................................................................76
【圖4.1.3】電刺激前,年齡相符的健康受測者和脊髓小腦共濟失調 症患者的大腦皮質內抑制和興奮百分比..............................................77
【圖4.2】低頻電刺激後,兩組受測者的標準化動作誘發電位百分比在各測量時間點的變化.............................................. ............. .. .. .......78
【圖4.3.1】低頻電刺激後,兩組受測者的大腦皮質內抑制百分比(ICI2)在各測量時間點的變化............................................................79
【圖4.3.2】低頻電刺激後,兩組受測者的大腦皮質內抑制百分比(ICI3)在各測量時間點的變化...........................................................80
【圖4.3.3】低頻電刺激後,兩組受測者的大腦皮質內興奮百分比(ICI10)在各測量時間點的變化...........................................................81
【圖4.3.4】低頻電刺激後,兩組受測者的大腦皮質內興奮百分比(ICI13)在各測量時間點的變化...........................................................82
【圖4.3.5】低頻電刺激後,兩組受測者的大腦皮質內興奮百分比(ICI16)在各測量時間點的變化...........................................................83
【圖4.3.6】低頻電刺激後,兩組受測者的大腦皮質內興奮百分比(ICI30)在各測量時間點的變化...........................................................84
【圖4.3.7】低頻電刺激後,兩組受測者的大腦皮質內抑制百分比(ICI150)在各測量時間點的變化...........................................................85
【圖4.3.8】低頻電刺激後,兩組受測者的大腦皮質內抑制百分比(ICI200)在各測量時間點的變化...........................................................86
【圖4.3.9】低頻電刺激後,兩組受測者的大腦皮質內抑制百分比(ICI300)在各測量時間點的變化...........................................................87
【圖4.4】高頻電刺激後,兩組受測者的標準化動作誘發電位百分比在各測量時間點的變化..........................................................................88
【圖4.5.1】高頻電刺激後,兩組受測者的大腦皮質內抑制百分比(ICI2)在各測量時間點的變化...........................................................89
【圖4.5.2】高頻電刺激後,兩組受測者的大腦皮質內抑制百分比(ICI3)在各測量時間點的變化...........................................................90
【圖4.5.3】高頻電刺激後,兩組受測者的大腦皮質內興奮百分比(ICI10)在各測量時間點的變化...........................................................91
【圖4.5.4】高頻電刺激後,兩組受測者的大腦皮質內興奮百分比(ICI13)在各測量時間點的變化...........................................................92
【圖4.5.5】高頻電刺激後,兩組受測者的大腦皮質內興奮百分比(ICI16)在各測量時間點的變化............................................................93
【圖4.5.6】高頻電刺激後,兩組受測者的大腦皮質內興奮百分比(ICI30)在各測量時間點的變化...........................................................94
【圖4.5.7】高頻電刺激後,兩組受測者的大腦皮質內抑制百分比(ICI150)在各測量時間點的變化...........................................................95
【圖4.5.8】高頻電刺激後,兩組受測者的大腦皮質內抑制百分比(ICI200)在各測量時間點的變化...........................................................96
【圖4.5.9】高頻電刺激後,兩組受測者的大腦皮質內抑制百分比(ICI300)在各測量時間點的變化...........................................................97
1. Amassian V.E., Stewart M., Quirk G.J., Rosenthal J.L. Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery 20:74~93, 1987
2. Asanuma H., Larsen K, Yumiya H. Peripheral input pathway to the monkey motor cortex. Experimental brain research 38: 349~355, 1980
3. Boniface S., Ziemann U. : Plasticity in the human nervous system. Cambridge, UK, 2003 ; p.4 ~ p.10; p.37~42
4. Brice A., Plust Stefan-M. : Spinocerebellar degenerations:the ataxias and spastic paraplegias. Philadephia, PA, 2007 ; chapter 4.
5. Chen R. Interactions between inhibitory and excitability circuits in the human motor cortex. Experimental brain research 154: 1~10, 2004
6. Corrine O. S., Sara J. M. et al., Spinocerebellar Ataxia: Making an Informed Choice About Genetic Testing. 2004
7. Deisz R.A. GABAB receptor-mediated effects in human and rat neocortical neurons in vitro. Neuropharmacology 38:1755~1766,1999
8. Grill S.E., Hallett M, McShane L.M. Timing of onset of afferent responses and of use of kinesthetic information for control of movement in normal and cerebellar-impaired subjects. Experimental brain research 113: 33~47, 1997
9. Harding A. E. : The hereditary ataxias and related disorders. Edinburgh, NY, 1984 ; p.17
10. Hirashima F., Yokota T. Influnce of peripheral nerve stimulation on human motor cortical excitability in patients with ventrolateral thalamic lesion. Archives of neurology 54:619~624, 1997
11. Kaelin-Lang A., Luft A.R., Sawaki L. Modulation of human corticomotor excitability by somatosensory input. Journal of physiology 540.2:623~633,2002
12. Kandel Eric R. SJH, Jessell Thomas M.: Principles of neuroscience. McGraw-Hill, USA,2000 ; p.832~852
13. Kellar A. Intrinsic synaptic organization of the motor cortex. Cerebral cortex 3:430~441,1993
14. Khaslavskaia S., Ladouceur M., Sinkjaer T. Increase in tibialis anterioi motor cortex excitability following repetitive electrical stimulation of the common perneal nerve. Experimental Brain Research 145:309 ~ 315, 2002
15. Khaslavskaia S., Sinkjaer T. Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive. Experimental Brain Research 162:497 ~ 502, 2005
16. Klockgether T., Dichgans. The genetic basis of hereditary ataxia. Progress in Brain Research 114:569 ~ 576, 1997
17. Klockgether T. : Handbook of ataxia disorders. Marcel Dekker Inc., NY, 2000 ; chapter 16.
18. Knash M. E., Kido A., Gorassini M., Chan K. M., Stein R.B. Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor evoked potentials. Experimental Brain Research 153:366~377, 2003
19. Kobayashi M., Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurology 2:145~156, 2003
20. Kofler M. Influence of transcutaneous electrical nerve stimulation on cutaneous silent periods in humans. Neuroscience Letters 360: 69~72, 2004
21. Liepert J., Wessel K., Scwenkreis P. Reduced intracortical facilitation in patients with cerebellar degeneration. Acta Neurologica Scandinavica 98:318 ~ 323, 1998
22. Liepert J., Kucinski T., Pawlas F. Motor cortex excitability after cerebellar infarction. Stroke 35:2484 ~ 2488, 2004
23. Madea Y., Lisi T.L. Release of GABA and activation of GABAA in the spinal cord mediates the effects of TENS in rats. Brain research 1136: 43~50, 2007
24. Masahito K., Alvaro P. Transcranial magnetic stimulation in neurology. Lancet Neurology 2:145 ~ 156, 2002
25. McDonnell M. N., Orekhov Y., Ziemann U. The role of GABAB receptors in intracortical inhibition in human motor cortex. Experimental Brain Research 173:86~93, 2006
26. Meng LF., Chen MC., Chu CN., Wu TF., Lu CP., Yeh CC., Yang CY., Lo CY. The directional effects on cursor dragging kinematics. International Journal of Computer Science and Network Security 7: 1~6, 2007
27. Mima T., Oga T., Rothwell J., Satow T., Yamamoto J., Toma K. Short-term high-frequency transcutaneous electrical nerve stimulation decreases human motor cortex excitability. Neuroscience Letters 355:85~88, 2004
28. Murakami T., Sakuma K., Nomura T., Nakashima K. Short-interval intracortical inhibition is modulated by high-frequency peripheral mixed nerve stimulation. Neuroscience Letters 420: 72~75, 2007
29. Nordmark E., Andersson G. Wartenberg pendulum test: objective quantification of muscle tone in children with spastic diplegia undergoing selective dorsal rhizomy. Developmental Medicine and Child Neurology 44: 26~33, 2002
30. O’sullivan S.B., Schmitz T. J.: Physical rehabilitation:assessment and treatment. Philadelphia , F.A. Davis , 1994
31. Pascual-Leone, Alvaro : Handbook of transcranial magnetic stimulation. Arnold, NY, 2002; p.141~162
32. Restivo D. A., Lanza S., Saponara R. Changes of cortical excitability of human cortex in spinocerebellar ataxia type 2. A study with paired transcranial magnetic stimulation. Journal of the Neurological Science 198:87 ~ 92, 2002
33. Ridding M. C., Brouwer B., Miles T.S., Pitcher J.B. Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Experimental Brain Research 131:135~143, 2000
34. Sailer A., Molnar G.F., Cunic D.I., Chen R. Effects of peripheral sensory input on cortical inhibition in humans. Journal of physiology 544.2: 617~629, 2002
35. Schwenkreis P., Tegenthoff M., Witscher K. Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain 125:301 ~ 309, 2002
36. Snell R.S. : Clinical neuroanatomy for medical students. Little Brown, 1992 ; p.211~227
37. Tamburin S., Fiaschi A., Andreoli A. Abnormal cutaneomotor intergration in patients with cerebellar syndromes:a transcranial magnetic stimulation study. Clinical Neurophyology 114:643 ~ 651, 2003
38. Tamburin S., Fiaschi A., Andreoli A. Stimulus- response properties of motor system in patients with cerebellar ataxia. Clinical Neurophyology 115:348 ~ 355, 2004
39. Tinazzi M., Zarattini S., Valeriani M. Long- lasting modulation of human motor cortex following prolonged transcutaneous electrical nerve stimulation ( TENS ) of forearm muscles:evidence of reciprocal inhibition and facilitation. Experimental Brain Research 161:457 ~ 464, 2005
40. Tsujimoto T., Gemba H., Sasaki K. Effect of cooling the dentate nucleus of the cerebellum on hand movement of the monkey. Brain Research 629:1~9, 1993
41. Yokota T., Sasaki H., Iwabuchi K. Electrophysiological features of central motor conduction in spinocerebellar atrophy type 1, type 2, and Machado-Joseph disease. Journal of neurology, neurosurgery and psychiatry 65: 530~534, 1998
42. 汪詩海 脊髓小腦萎縮症致病基因之研究。國立陽明大學生命科學院生物化學研究所碩士論文 民90
43. 謝宗勳 動作誘發電位和H反射在感覺缺損之脊髓損傷患者經週邊神經電刺激後之調控。長庚大學復健科學研究所碩士論文 民93
44. 楊筱筑 正中神經電刺激對小腦萎縮症患者動作誘發電位的促進調控研究。長庚大學復健科學研究所碩士論文 民94
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊