(3.230.154.160) 您好!臺灣時間:2021/05/07 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳睿嘉
研究生(外文):jui chia chen
論文名稱:觸覺感知系統之耗散性分析與控制器設計
論文名稱(外文):Passivity Analysis and Controller Design of Haptic Rendering Systems
指導教授:張永華張永華引用關係
指導教授(外文):Y. H. Chang
學位類別:碩士
校院名稱:長庚大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:93
中文關鍵詞:力回饋觸覺感知系統穩定性耗散控制器虛擬環境
外文關鍵詞:force feedbackhaptic rendering systemstabilitypassivitycontrollervirtual environment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文基於一個結合力回饋的虛擬實境平台,探討虛擬物件參數對觸覺感知所產生的影響;其中,虛擬物件是以一個具阻泥的彈簧模型表示。為改善虛擬物件因負阻泥係數與高彈簧係數所造成的震盪與發散,本文提出一個結合耗散理論系統的阻泥型控制器分析與設計方法,藉此可獲得確保系統穩定控制係數範圍。相較於傳統時域耗散控制器,本文所提之控制器架構,在負阻泥係數及高彈簧係數情況下,均能提供較佳的穩定收斂效果。相關結果除模擬驗證外,另將具體實現在所建構的虛擬實境系統,藉此產生穩定的觸覺感知能力。
This thesis, based on a haptic virtual reality platform, mainly investigates the influence of haptic rendering regarding to the parameters of virtual objects. A spring-damper model is used to represent the virtual objects. To improve the oscillation and divergence effects caused by negative damping coefficients and high spring constants, stability analysis and design of a damping-type controller is considered. Integrating with the passivity stability theorem, a stable range of the controller coefficients can be obtained. Compared to conventional time-domain passivity controllers, the proposed control scheme can provide better performance of stabilized convergence in the case of negative damping coefficients and high spring constants. In addition of simulation verification, the proposed scheme is implemented in the virtual reality system to generate stable haptic rendering.
目錄
摘要
ARSTARCT
誌謝
目錄
圖目錄
表目錄
1 緒論
1.1 研究背景
1.2 文獻回顧
1.3 研究動機與目的
1.4 內容大綱
2 虛擬環境穩定性分析方法
2.1 耗散理論
2.2 系統頻域穩定性分析
2.3 羅斯赫維茲(Routh-Hurwitz)穩定性分析
2.4 穩定性分析方法比較
3 控制器設計
3.1 時域即時能量補償控制器設計
3.1.1 耗散估測器(Passivity Observer)
3.1.2 耗散控制器(Passivity Controller)
3.2 以羅斯赫維茲穩定度為依據之控制器設計
3.3 具控制器參數穩定範圍特性與能量耗散之控制器設計
4 模擬結果與分析比較
4.1 模擬架構
4.2 參數設定與流程
4.3 模擬結果分析
4.3.1 無控制器之模擬與分析
4.3.2 負阻泥係數影響與控制器補償
4.3.3 高彈簧係數影響與控制器補償
5 實驗流程與結果
5.1 實驗平台介紹
5.2 操作端機械手臂
5.3 觸覺設備端(Haptic Device)
5.3.1 PHANToM Omni觸覺感知設備
5.3.2 資料傳輸介面
5.3.3 軟體開發工具與應用程式介面
5.3.4 外部設定功能
5.3.5 外部測試程式
5.4 虛擬環境端(Virtual Environment)
5.4.1 Visual C++
5.4.2 MFC(Microsoft Foundation Class)
5.4.3 OPENGL(Open Graphics Library)
5.5 實驗介紹
5.5.1 訊號取樣
5.5.2 影像初始化、轉換、處理
5.5.3 觸覺感知設備初始化與操作
5.5.4 碰撞偵測
5.6 實驗結果與分析
5.6.1 未加控制器之比較
5.6.2 負阻泥係數之影響與控制器補償
5.6.3 高彈簧係數之影響與控制器補償
6 結論與建議
6.1 結論
6.2 建議
參考文獻

圖目錄
圖1.1 虛擬實境醫療手術模擬
圖2.1 單埠網路
圖2.2 觸覺虛擬環境系統架構圖
圖2.3 在系統頻率為奈式頻率時之虛擬環境穩定範圍圖
圖2.4 觸覺力回饋系統架構圖
圖2.5 虛擬環境參數穩定性範圍比較圖
圖2.6 虛擬環境 、 穩定範圍(近似式)
圖3.1 觸覺虛擬環境系統架構圖
圖3.2 虛擬牆架構
圖3.3 觸覺虛擬環境系統架構圖
圖3.4 加入控制器參數後之穩定性分析圖
圖3.5 含控制器之羅斯赫維茲穩定範圍圖(B值為正)
圖3.6 含控制器之羅斯赫維茲穩定範圍圖(含B值為負)
圖3.7 小參數穩定範圍
圖4.1 虛擬環境Simulink模擬系統架構圖
圖4.2 觸覺感知系統方塊圖
圖4.3 K=200 , B=0.5
圖4.4 系統能量變化。 K=200, B=0.5
圖4.5 K=200 , B=-0.5
圖4.6 系統能量變化。 K=200, B=-0.5
圖4.7 K=200 , B=-0.9
圖4.8 系統能量變化。 K=200, B=-0.9
圖4.9 K=1200 , B=0.1
圖4.10 系統能量變化。 K=1200 , B=0.1
圖4.11 K=2500 , B=0.1
圖4.12 系統能量變化。 K=2500 , B=0.1
圖4.13 PC控制器 K=200 , B=-0.5
圖4.14 PC控制器 K=200 , B=-0.9
圖4.15 K=200 , B=-0.5 α=0.7
圖4.16 K=200 , B=-0.9 α=0.7
圖4.17 耗散控制器補償結果
圖4.18 固定阻泥式控制器補償結果 α=0.7
圖5.1 觸覺感知系統實驗平台
圖5.2 左為觸覺感知設備,右為AI馬達機械手臂
圖5.3 AI-1001馬達機械手臂VB人機控制界面
圖5.4 PHANTOM Omni Haptic Device與其座標定義
圖5.5 硬體變更設定
圖5.6 雙手臂設定
圖5.7 角度修正設定
圖5.8 軟體開發說明
圖5.9 PHANTOM Omni 力回饋測試程式
圖5.10 影像初始化與處理流程圖
圖5.11 主要函式執行流程圖
圖5.12 設備初始化與操作流程圖
圖5.13 K=1000 , B=5
圖5.14 K=1000 , B=-4
圖5.15 K=1000 , B=-7
圖5.16 K=4000 , B=5
圖5.17 耗散控制器 K=1000 , B=-7
圖5.18 固定阻泥控制器 K=1000 , B=-7 α=1
圖5.19 固定阻泥控制器 K=1000 , B=-7 , α=3
圖5.20 耗散控制器 K=4000 , B=5
圖5.21 固定阻泥控制器 K=4000 , B=5 α=3


表目錄
表1 PHANTOM Omni Haptic Device 規格與特性表
表2 HU值與組織關係對照表
[1] F. P. Brooks, Jr., “What’s Real about Virtual Reality?,” IEEE Computer Graphics and Applications, pp. 16-27, 1999.
[2] http://www.inotera.com/Chinese/Human_Resources/Careers/IRSD/Technology/Events/Imitative_Printing_Sys/
[3] M. A. Otaduy, N. Jain, A. Sud, and M. C. Lin, “Haptic Display of Interaction between Textured Models,” Proc. of IEEE Visualization ConferenceAustin, TX, pp. 297-304., 2004.
[4] M. Eriksson, H. Lemmer, and J. Wikander, “A Haptic and Virtual Reality Skull Bone Surgery Simulator,” Proceedings of World Haptics, March, Pisa, Italy., 2005.
[5] P. Marshall, S. Payandeh, and J. Dill, “A Study on Haptic Rendering in a Simulated Surgical Training Environment,” Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pp.:241 – 247.,2006
[6] 石明于,外科手術模擬系統中的模型切割及重塑,國立中央大學資訊工程系,碩士論文,民國86年。
[7] K. D. Reinig, etc.,
http://www.uchsc.edu/sm/chs/research/MMVR4.html
[8] UNC Ultrasound,
http://www.cs.unc.edu/Research/us/
[9] Stanford Telerobotics lab,
http://telerobotics.stanford.edu
[10] JHU Haptic Exploration lab,
http://www.haptics.me.jhu.edu
[11] 伍永康、歐陽明(民87)。虛擬實境以及其在娛樂上的應用。光訊,vol.71,pp. 4-6.
[12] N. Diolaiti, G. Niemeyer, F. Barbagli, and J. K. Salisbury, “A Criterion for the Passivity of Haptic Devices,” Proc. IEEE Int. Conf. Robot. Autom., Barcelona, Spain, pp. 2463–2467, 2005.
[13] F. Janabi-Sharifi, V. Hayward, and C.-S. J. Chen, “Discrete-time Adaptive Windowing for Velocity Estimation,” IEEE Trans. on Control Systems Technology, vol. 8, no. 6, pp. 1003-1009, 2000.
[14] J. H. Ryu, Y. S. Kim, and B. Hannaford, “Sample and Continuous Time Passivity and Stability of Virtual Environments,” Proc. IEEE Int. Conf. Robot. Autom., Taipei, Taiwan, pp. 14-19, 2003.
[15] J. H. Ryu, J. H. Kim, and D. S. Kwon, “A Simulation/Exerimental Study of the Noisy Behavior of the Time Domain Passivity Controller for Haptic Interfaces,” Proc. IEEE Int. Conf. Robot. Autom., Barcelona, Spain, pp. 4321-4325, 2005.
[16] B. E. Miller, J. E. Colate, and R. A. Freeman, “Environment Delay in Haptic Systems,” Proc. IEEE Int. Conf. Robot. Automat., San Francisco, CA, pp. 2434-2439, 2000.
[17] G. Niemeyer, and J. J. Slotine, “Stable Haptic Adptive Teleoperation,” IEEE Journal of Oceanic Engineering, vol. 16, pp. 152-162, 1991.
[18] J. H. Ryu, D. S. Kwon, and B. Hannaford, “Stable Teleoperation with Time Domain Passivity Control,” IEEE Trans. on Robotics and Automation, vol. 20, no. 2, pp. 365-373, 2004.
[19] R. J. Anderson, and M. W. Spong, “Asymptotic Stability for Force Reflecting Teleoperators with Time Delay,” Int. Journal of Robotics Research, vol. 11, no. 2, pp. 135-149, 1992.
[20] C. Preusche, G. Hirzinger, J. H. Ryu, and B. Hannaford, “Time Domain Passivity Control for 6 Degrees of Freedom Haptic Displays,” IEEE Conference on Intelligent Robots and Systems, Las Vegas, Nevada, October, 2003. pp. 2944-2949.
[21] J. E. Colgate, P. E. Grafing, M. C. Stanley, and G. Schenkel, “Implementation of Stiff Virtual Walls in Force-Reflecting Interfaces,” Proc. of IEEE Virtual Reality Annu. Int. Symp., Seattle, WT, pp. 202-208, 1993.
[22] J. E. Colgate and G. Schenkel, “Passivity of a Class of Sampled Data Systems: Application to Haptic Interfaces,” American Control Conference, Baltimore, MD, pp. 3236-3240, 1994.
[23] J. E. Colgate, M. C. Stanley,and J. M. Brown, “Issues in the Haptic Display of Tool Use,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, Pittsburgh, PA, 1995, pp. 140-145.
[24] J. E. Colgate and J. M. Brown, “Factors Affecting the Z-Width of a Haptic Display,” Proc. of the IEEE 1994 International Conference on Robo. & Autom., San Diego, CA, pp. 3205-3210, 1994.
[25] R. J. Adams and B. Hannaford, “Stable Haptic Interaction with Virtual Environments,” IEEE Trans. Robot. Automat., vol. 15, pp. 465-474, June 1999a.
[26] B. Hannaford and J. Ryu. “Time-Domain Passivity Control of Haptic Interfaces,” IEEE Transactions on Robotics and Automation, vol. 18, no. 1, pp. 1-10, 2002.
[27] S. Stramigioli, C. Secchi, and A. J. van der Schaft, ”A Novel Theory for Smpled Data System Passivity,” Proc. IEEE/RSJ Int. Conf. Intelligent Robotics and Systems, Lausanne, Switzerland, pp. 1936-1941, 2002.
[28] J. H. Ryu, B. Hannaford, C. Preusche, and G. Hirzinger, “Time Domain Passivity Control with Reference Energy Behavior,” Proc. IEEE/RSJ Int. Conf. Int. Robotics Systems, Las Vegas, NV, pp. 2932-2937, 2003.
[29] J. J. Gil, A. Avello, A. Rubio, and J. Florez, “Stability Analysis of a 1 DOF Haptic Interface Using the Routh-Hurwitz Criterion,” IEEE Trans. on Control System Technology, vol. 12, no. 4, pp. 583-588, 2004.
[30] J. An, and D. S. Kwon, “In Haptics, the Influence of the Controllable Physical Damping on Stability and Performance,” Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan. pp. 1204-1209, 2004.
[31] X. Shen and M. Goldfarb, ”On the Enhanced Passivity of Pneumatically Actuated Impedance-Type Haptic Interfaces,” IEEE Trans. on Robotics., vol. 22, no. 3, pp. 470-480, 2006.
[32] T. Hulin, C. Preusche, and Gerd Hirzinger, ”Stability Boundary for Haptic Rendering:Influence of Physical Damping,” Proc. IEEE/RSJ International Conf. on Intelligent Robots and Systems, Beijing, China., pp. 1570-1575, 2006.
[33] J. J. Gil, and E. Sanchez, ”Stability Boundary for Haptic Rendering: Influence of Damping and Deley,” IEEE International Conf. on Robo. and Autom., Roma, Italy, pp. 124-129, 2007.
[34] Y. Hou, and G. R. Luecke, “Time Delayed Teleoperation System Control: A Passivity-based Method,” IEEE, pp. 796-802, 2005.
[35] D. Lee and M. W. Spong, “Passive Bilateral Teleoperation with Constant Time Delay,” IEEE Trans. on Robotics, vol. 22, no. 2, pp. 269-281, 2006.
[36] J. H. Ryu, D. S. Kwon, and B. Hannaford, “Stability Guaranteed Control: Time-Domain Passivity Approach,” Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Lausanne, Switzerland, pp. 2115-2121, 2002.
[37] K. J. Kuchenbecker, J. Fiene, and G. Niemeyer, “Improving Contact Realism through Event-Based Haptic Feedback,” IEEE Tran. on visualization and computer graphics, vol. 12, no.2, 2006.
[38] H. J. Marquez, Nonlinear Control Systems: Analysis and Design. Wiley-Interscience, 2003.
[39] 虛擬實境之應用,
http://web.lit.edu.tw/~eeweb/traverse/link09.htm
[40] SensAble Technologies, Inc.,
http://www.sensable.com/haptic-phantom-omni.htm
[41] The Berkeley Initiative in Soft Computing,
http://www-bisc.cs.berkeley.edu/BISCProgram/default.htm
[42] B. Itkowitz, J. Handley, and W. Zhu, “The OpenHaptics™ Toolkit A Library for Adding 3D Touch™ Navigation and Haptics to Graphics Applications,” Proc. of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, IEEE, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔