(18.206.187.91) 您好!臺灣時間:2021/05/19 01:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蘇盈勳
研究生(外文):Ying Hsun Su
論文名稱:電漿系統設備開發與特性分析
論文名稱(外文):Development of plasma system and characteristic analysis
指導教授:廖駿偉
指導教授(外文):Jiunn Woei Liaw
學位類別:碩士
校院名稱:長庚大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:123
中文關鍵詞:微波電漿輔助化學氣相沉積高密度電漿靜電探針光放射式光譜即時製程監測C2譜線
外文關鍵詞:MPECVDHigh density plasmaLangmuir probeOptical emission spectroscopy(OES)Real-timeC2 Swan band
相關次數:
  • 被引用被引用:1
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
  本研究開發一套結合靜電探針(Langmuir Probe)及多通道(Multi-channels)光放射式光譜儀(Optical Emission Spectroscopy;OES)之即時(Real-time)電漿診斷(Diagnosis)系統,並使用此量測系統,對自行開發的微波電漿輔助化學氣相沉積(Microwave plasma enhanced chemical vapor deposition;MPECVD)設備進行電漿之物理特性及化學成份的分析。在不同的微波功率、腔體壓力條件下,使用OES及Langmuir Probe,分別量測氮氣、氫氣及氬氣的電子溫度、電漿密度及全光譜(200~1700nm),並探討其相關性;本設備在激發壓力為0.5到20 Torr之間,可生成密度介於1012~1013 cm-3的高密度電漿。此外研究含碳氫之電漿特性,例如分別在混合氫氣與丙烷(100:1)以及混合氫氣與甲烷(110:1)所形成之電漿中,明顯觀察到C2,CH譜線。
最後利用OES量測電漿動態變化,當連續變化系統參數(微波功率、壓力)時,分別量測氮氣、氫氣及氬氣,可以明顯觀察到特定光譜譜線強度隨參數變化呈現規律性的變動。
  In our research, a real-time monitoring system for plasma diagnosis is developed, which combines a Langmuir probe and multi-channel optical emission spectroscopy (OES). Using this system, the physics properties (electrical temperature, plasma density) and the chemical species (atoms, ions, radicals) of the plasma are analyzed for a microwave plasma-enhanced chemical vapor deposition (MPECVD) system, developed by us. The properties of the plasma of nitrogen, hydrogen, and argon are measured, respectively, for different parameters (microwave power and pressure). In our experiments, high density plasma (HDP) of 1012~1013cm-3 is generated, when the pressure is from 0.5 Torr to 20 Torr. The correlation of the data of OSE and Langmuir probe with that of these parameters is discussed. In addition, the plasma of carbon-hydrogen gas is also studied. Two mixtures are measured; one is hydrogen and propane (100:1) and the other is hydrogen and methane (110:1). Using OES, the spectra of CH, C2 Swan-band lines are observed obviously.
Finally, OES is used to monitor the dynamic variations of the plasma of nitrogen, hydrogen, and argon, respectively, when the microwave power and pressure are changed time-dependently.
目錄
指導教授推薦書
口試委員會審定書
授權書 i
致謝 ii
摘要 iv
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究背景及動機 2
1.3 文獻回顧 4
第二章 理論基礎 8
2.1 電漿輔助化學沉積法(PECVD) 8
2.2 薄電漿鞘理論(Thin Plasma Sheath Theory) 10
2.3 光放射式光譜儀(OES)原理 15
第三章 研究架構與實驗設備 17
3.1介紹 17
3.2 微波電漿反應系統 18
3.2.1共振腔及反應腔體的設計 18
3.2.2 真空系統 20
3.2.3 進氣及壓力控制 20
3.2.4壓力量測系統 21
3.3靜電探針(Langmuir Probe)的建構 22
3.3.1 電子溫度及電漿密度即時監控軟體 23
3.4 電漿光譜儀(OES)診斷監控系統 24
3.4.1多通道即時電漿光譜監測分析軟體 25
第四章 實驗結果與討論 27
4-1同步使用多通道光譜儀與靜電探針量測系統之分析與討論 27
4-2調整電漿參數之動態即時量測分析 33
4-2-1光譜儀動態量測分析 33
4-2-2靜電探針動態量測分析 33
4-3光譜儀對丙烷氫氣之混合氣體電漿的分析 35
4-4光譜儀對甲烷氫氣之混合氣體電漿的分析 38
第五章 結論 40
第六章 未來工作及建議 43
參考文獻 45


表目錄
表3-1 各種氣體質量流量計種類與規格 51
表3-2 實驗氣體種類、濃度及其來源 51
表3-3 光放射式光譜儀規格 52
表4-1 氬氣、氮氣及氫氣電漿放光之特定波長 52
表4-2 在微波功率1200W壓力0.5Torr下,計算出監控60秒所量測的電子溫度及電漿密度之平均值及標準差 53
表4.3 實驗相關參數 53
表5-1 物理參數趨勢隨腔體壓力以及微波功率的變化 54


圖目錄
圖2-1 (A)熱燈絲CVD系統與(B)微波輔助CVD系統示意圖 55
圖2-2 粒子進入電漿鞘層示意圖 55
圖2-3 a=探針半徑,s=電鞘半徑,λ=平均自由路徑,假設比例示意圖 55
圖2-4 I-V曲線圖 56
圖2-5 ln(I)-V曲線圖 56
圖2-6 光譜與能階的關係 57
圖2-7 RF-PECVE製備奈米碳管 57
圖2-8 CNT製程中FTIR所量測到的紅外光譜 57
圖3-1 微波電漿輔助化學氣相沉積設備(圓柱體腔體) 58
圖3-2 研究架構圖 59
圖3-3 共振反應腔設計示意圖 59
圖3-4 微波電漿輔助化學氣相沉積設備示意圖(圓柱體腔體) 60
圖3-5 微波電漿輔助化學氣相沉積設備(長方體之腔體) 60
圖3-6 微波電漿輔助化學氣相沉積設備(長方體之腔體) 61
圖3-7 靜電探針架設在腔體作量測(A)正面圖(B)背面圖 61
圖3-8 靜電探針圖 62
圖3-9 靜電探針量測電路及設備示意圖 62
圖3-10 等效電路圖 63
圖3-11 電壓放大器 63
圖3-12 靜電探針量測系統程式流程圖 64
圖3-13 在特定波長範圍內取強度最大值示意圖 64
圖3-14 在特定波長範圍內取此範圍之積分面積示意圖 65
圖4-1 光譜儀量測空間解析度示意圖 66
圖4.2 壓力0.5Torr及微波功率1200W下,H2電漿放射光譜圖 67
(A)UV範圍(B)VIS範圍(C)NIR範圍 67
圖4.3 壓力0.5Torr及微波功率1200W下,N2電漿放射光譜圖 68
(A)UV範圍(B)VIS範圍(C)NIR範圍 68
圖4.4 壓力0.5Torr及微波功率1200W下,Ar電漿放射光譜圖 69
(A)UV範圍(B)VIS範圍(C)NIR範圍 69
圖4.5 各種微波功率下,H2電漿在VIS範圍,對特定波長(Hα=656nm,Hβ=485nm)強度下隨壓力之變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 70
圖4-6 H2氣電漿在不同微波功率下,電子溫度及電漿密度對壓力的變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 71
圖4-7 各種微波功率下,N2電漿在UV範圍,對特定波長(337.1nm,357nm)強度下隨壓力之變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 72
圖4-8 各種微波功率下,N2電漿在VIS範圍,對特定波長(536.5nm,586.7nm,656.7nm,744.2nm,882nm)強度下隨壓力之變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 73
圖4-9 各種微波功率下,N2電漿在NIR範圍,對特定波長(1050nm,1223nm)強度下隨壓力之變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 74
圖4-10 N2氣電漿在不同微波功率下,電子溫度及電漿密度對壓力的變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 75
圖4-11 各種微波功率下,Ar電漿在UV範圍,對特定波長(428.2nm,487.9nm)強度下隨壓力之變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 76
圖4-12 各種微波功率下,Ar電漿在VIS範圍,對特定波長(646.6nm,693.7nm,750.3nm,826.4,912.2nm)強度下隨壓力之變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 77
圖4-13 各種微波功率下,Ar電漿在NIR範圍,對特定波長(1298.2nm,1331.3nm,1624.7nm)強度下隨壓力之變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 78
圖4-14 Ar氣電漿在不同微波功率下,電子溫度及電漿密度對壓力的變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 79
圖4-15 分別對Ar、H2及N2氣體之電漿,在不同微波功率下電子溫度對壓力的變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 80
圖4-16 分別對Ar、H2及N2氣體之電漿,在不同微波功率下電漿密度對壓力的變化(A)660W(B)780W(C)900W(D)1000W(E)1200W 81
圖4-17 各種微波功率下,電子溫度對壓力的變化(A)H2(B)N2(C)Ar 82
圖4-18 各種微波功率下,電漿密度對壓力的變化(A)H2(B)N2(C)Ar 83
圖4-19 OES動態即時監控氫氣電漿,在固定壓力為0.5Torr下,隨微波功率的改變 84
圖4-20 OES動態即時監控氮氣電漿,在固定壓力為0.5Torr下,隨微波功率的改變(A)UV範圍(B)VIS範圍(C)NIR範圍 85
圖4-21 OES動態即時監控氬氣電漿,在固定壓力為0.5Torr下,隨微波功率的改變(A)UV範圍(B)VIS範圍(C)NIR範圍 86
圖4-22 OES動態即時監控電漿,在固定微波功率為800W下,壓力1Torr上升到2Torr(A)氬氣(B)氮氣(C)氫氣 87
圖4-23 固定壓力及微波功率下監控60秒,電子溫度及電漿密度的動態變化(A)氫氣(B)氮氣(C)氬氣 88
圖4-24 使用OES在壓力1.8Torr微波功率為1200W時,通入C3H8:H2=1:100的氣體,產生電漿的光譜圖(A)UV範圍(B)VIS範圍 89
圖4-25 各種微波功率下,C3H8:H2=1:100,對特定波長(485nm,584.4nm,598nm,619.1nm,656nm)強度下隨壓力之變化(A)400W(B)600W(C)800W 90
圖4-26 各種微波功率下,C3H8:H2=1:100,對特定波長(C2/CH)強度下隨壓力之變化(A)400W(B)600W(C)800W 91
圖4-27 各種微波功率下,C3H8:H2=1:100,對特定波長(C2/CH)強度下隨壓力之變化(A)400W(B)600W(C)800W 92
圖4-28 各種微波功率下,C3H8:H2=1:100,對特定波長(Hβ/CH)強度下隨壓力之變化(A)400W(B)600W(C)800W 93
圖4-29 使用OES在壓力1.3Torr微波功率為780W時,電漿在VIS範圍的光譜圖(A)CH4:H2=1:60的比例(B)CH4:H2=1:110的比例 94
圖4-30 微波功率780W下,,對特定波長(C2/CH)強度下隨壓力之變化(A)CH4:H2=1:60的比例(B)CH4:H2=1:100的比例 95
圖4-31 微波功率780W下,對特定波長(Hα/CHHβ/CH)強度下隨壓力之變化(A)CH4:H2=1:60的比例(B)CH4:H2=1:110的比例 96
1. G. P. Lopez, et al., “Plasma Deposition of Ultrathin Films of Poly (2-hydroxyethyl methacrylate): Surface Analysis and Protein Adsorption Measurements”, Macromolecules, Vol. 26, No 13, pp. 3247, 1993.
2. P.Favia and R.d’Agostino, “Plasma Treatments and Plasma Deposition of Polymers for Biomedical Applications”, Surface & Coatings Technology, Vol. 98, pp. 1102,January, 1998
3. 艾啟峰,《電漿工程科技在表面處理工業應用之發展》,科儀新知,p.85,1999
4. A. Grill, “ Cold Plasma in Materials Fabrication“, IEEE Press, 1994.
5. Langmuir, Phys Rev., Vol. 33,No. 954, 1929
6. C.J. Tang, A.J. Neves, A.J.S. Fernandes,“ Study the effect of O addition on hydrogen incorporation in CVD diamond“, Diamond & Related Materials, Vol. 13, pp.203–208, 2004
7. W.C. Hsiao, C.P. Liu, Y.L. Wang, “Thermal properties of hydrogenated amorphous silicon prepared by high-density plasma chemical vapor deposition“, J. Phys. Chem. Solids , 2007
8. L. J. Overzet, “Gas-phase and sample characterizations of multiwall carbon nanotube growth using an atmospheric pressure plasma“, Anand Chandrashekar, published 3 August 2006
9. Ch. Deschenaux et al., “Investigations of CH4, C2H2 and C2H4 dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry“ J. Phys. D: Appl. Phys. Vol. 32, pp.1876–1886 , 1999
10. G.C. Chen et al., “ Gas phase study and oriented self-standing diamond film fabrication in high power DC arc plasma jet CVD“ Diamond & Related Materials, Vol. 16, pp.477–480 , 2007
11. 廖駿偉,〈OES技術於電漿製程監測之應用〉,工業材料雜誌,第213期,171–176頁,93年9月
12. S. Rousseau et al., “Purification of MG silicon by thermal plasma process coupled to DC bias of the liquid bath“ Solar Energy Materials & Solar Cells , Vol 91,pp.1906–1915, 2007
13. T.Y.Lee et al., “Effects of source gases on the growth of carbon nanotubes“, Diamond & Related Materials , Vol. 12 , pp.851–855, 2003
14. H. SHIRAI et al.,“Synthesis of Well-Aligned Carbon Nanotubes Using a High-Density RF Inductive Coupling Plasma“, Jpn. J. Appl. Phys., No.4A , pp.1951–1954, 2005
15. H. Zhou et al., “Optical and mass spectroscopy measurements of Ar/CH4/H2 microwave plasma for nano-crystalline diamond film deposition“ Diamond & Related Materials, Vol. 16 , pp.675–678, 2007
16. M.S.Bell et al. “Carbon nanotubes by plasma-enhanced chemical vapor deposition“17th International Symposium on Plasma Chemistry (ISPC 17), pp. 1117–1125, Canada , 2006
17. S.M.Leeds, “Characterisation of the Gas-Phase Environment in a Microwave Plasma Enhanced Diamond Chemical Vapour Deposition Reactor using Molecular Beam Mass Spectrometry“,University of Bristol, Doctor of Philosophy,England, April 1999.
18. A.Chandrashekar, “Gas-phase and sample characterizations of multiwall carbon nanotube growth using an atmospheric pressure plasma“, Vacuum Science and Technology , pp. 1812–1817, 2006
19. D. M. Manos, “Characterization of Laboratory Plasma with Probe”, Vacuum Science and Technology , Vol. 3, pp.1059–1066, 1985
20. Y. Ye, R. K. Marcus, “Application of a Tunes Langmuir Probe for the Diagnostic Study of Ratio Frequency Glow Discharges: Instrumentation and Throry“, Spectrochimica Acta Part A, pp.907–1010 ,1995
21. Brockhaus et al., “Characterizaton of a Microwave Plasma by In situ Discharge”, Surface and coatings Technology , Vol.74-75 , pp.431– 442 , 1995
22. P. Kurunczi et al., “Measurment of Rotational Temperatures in high-pressure Microhollowcathod (MHC) and Capillary Plasma Electode (CPE) Discharges”, Acta physica slovaca vol. 54, No.2, pp.115–114, 2004
23. H. Sternschulte1. M. Schreck, B. Stritzker, A. Bergmaier, “Control of Lithium-t-Butoxide Addition during Chemical Vapour Deposition of Li-Doped Diamond Films by Optical Emission Spectroscopy”, Phys. stat. sol. pp.174, 1999
24. F. Hempel, L. Mechold, J. Röpcke, “Infrared Absorption Spectroscopic Studies of H2–Ar–N2 Microwave Discharges Containing Methane or Methanol”, Plasma Sources Sci. Technol. Vol. 12, pp.98–110, 2003
25. M.Aflori,J.L.Sullivan,”Langmuir probe measurements in an asymmetrical rf discharge”, Romanian Reports in Physics, Vol. 57, No. 1, pp.71–77, 2005
26. 丁南宏,《真空技術與應用》,國研院儀科中心,初版,,2001
27. J. D. Swift, M. J. R. Schwar, ”Electrical Probes for Plasma Diagnostics”, Chap.1 ,Iliffe Books, 1971
28. P. M. Chung, L. Talbot, K. J. Touryan,〈Electric Probe in stationary and Flowing Plasma: Theory and Application〉, Chap.3, Springer Verlag, 1975
29. R. H. Huddleston, S. L. Leonard, 〈Plasma Diagnostic Technology〉, Chap 3, Academic Press, 1965
30. M. Capitelli, C. Gorse, 〈Plasma Technology: Probe Diagnostics of Plasmas〉, Pienum Press, 1992
31. 翁志強,〈順流式遠端電漿對單層有機金屬表面反應機制之研究〉,私立中原大學,碩士論文
32. 吳亭緯,〈微波電漿特性研究〉,長庚大學,碩士論文
33. M. Taggart, F. K., “Plasma Chemistry in Electrical Discharges“, Amsterdam press, pp. 65, 1967.
34. Bogaerts et al., “Plasma Diagnostics of Analytical Grimm-type Glow Discharge in Argon and in Neon: Langmuir Probe and Optical Emission Spectrometry Measurements”, Spectrochimica Acta Part B, Vol. 50, pp. 1377–1349, 1995.
35. Bill George,Peter Mclntyre著,〈紅外線光譜分析法〉,翁瑞裕譯,高立圖書,台北,民國九十年
36. 田民波,薄膜技術與薄膜材料,五南圖書,台北,民國九十六年
37. L.Holland, S.M.Ojha, “ Growth of Carbon Films with random atomic structure from ion impact damage in a hydrocarbon plasma“ Thin Solid Films ,Vol. 58,No. 1, pp. 107–116, 1978
38. R.W.B.Pearse, A.G.Gaydon, “The identification of molecular spectra“, John Wiley&Sons, Inc, New York
39. C.Tixier et al. “Remote Microwave Plasma Enhanced Chemical Vapour Deposition of Amorphous Carbon: Optical Emission Spectroscopy Characterisation of the Afterglow and Growth Rates“, supplkment au Journal de Physique ,Vol. 5, juin, 1995
40. M.J. Chiang , M.H. Hon ,“Optical emission spectroscopy study of positive direct current bias enhanced diamond nucleation “, Thin Solid Films ,Vol.516 , pp.4765–4770 , 2007
41. T. Y. Lee et al. , “Effects of source gases on the growth of carbon nanotubes “, Diamond and Related Materials ,Vol. 12, pp.851–855 ,2003
42. J.A. Smith et al. ,“Diamond deposition in a DC-arc Jet CVD system:investigations of the effects of nitrogen addition “, Diamond and Related Materials , Vol. 10, pp. 370–375, 2001

43. S. Hofmann et al. ,“Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes “, Diamond and Related Materials , 2003
44. J.R.Rabeau , P. John , and J. I.B. Wilson , “The role of C2 in nanocrystalline diamond growth “, JOURNAL OF APPLIED PHYSICS ,Vol. 96 ,No. 11, 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top