跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/14 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠伶
研究生(外文):Kuan Ling Chen
論文名稱:金屬奈米粒子的光學特性之生物影像應用
論文名稱(外文):Cell Imaging Application by using the Optic Properties of Metal Nanoparticles
指導教授:廖駿偉
指導教授(外文):J. W. Liaw
學位類別:碩士
校院名稱:長庚大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:111
中文關鍵詞:表面電漿共振效應雷射掃描共軛焦顯微鏡金屬奈米粒子奈米桿細胞影像生物標記螢光染劑
外文關鍵詞:Surface plasmon resonanceLaser scanning confocal microscopymetal nanoparticlesNanorodsCellular imagingBiomarkerFluorescence dye
相關次數:
  • 被引用被引用:2
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的主要使用金奈米桿與銀奈米粒子,利用其獨特的光學
特性,做為細胞影像觀察之媒介,並加上PI與DAPI二種染劑,與金奈
米粒桿、銀奈米粒子比較在雷射/超快雷射掃描式共軛焦顯微鏡觀察
之表現。使用電化學法合成金奈米桿,氧化還原法合成銀奈米粒子,
之後以紫外光/可見紅/近紅外光光譜儀及穿透式電子顯微鏡確認。實
驗中使用特徵吸收峰在600nm的金奈米桿,其長短軸比約2.13。而球
形銀奈米的特徵吸收峰在400nm,將金奈米桿、銀奈米粒子與人類乳
導管癌細胞(MDA-MB-435S)共培養,使用不同波長之雷射(包括
458nm、488nm、514nm、561nm、633nm)做為激發光源,藉由使用二
個不同波段之濾波器,分別接收奈米粒子的散射光與染劑的螢光,在
雷射共軛焦顯微鏡下觀察。奈米粒子的散射光與染劑的螢光可以同時
被接收且沒有訊號互相干擾的情形,並且影像可以利用軟體同時呈現,
奈米粒子由於其表面電漿共振效應(SPR),可散射不同雷射光,因此
在各個波長下都有表現。另外對細胞做光學掃描切片,觀察奈米粒子
在細胞內的位置,而使用穿透式電子顯微鏡,觀察到奈米粒子在細胞
質中的囊泡內,細胞利用內噬作用將奈米粒子帶入細胞質的囊泡中。
在囊泡中的奈米粒子團聚使得SPR頻寬更寬,故適當選擇雷射與濾波
器範圍,可分離奈米粒子的散射光與染劑的螢光。進一步利用超快雷
射(800 nm)激發金屬奈米粒子與PI染劑,可取得雙光子細胞影像。總
之,金屬奈米粒子可以與螢光染劑結合使用,做為生物標記。
關鍵字:表面電漿共振效應、雷射掃描共軛焦顯微鏡、金屬奈米粒子、
奈米桿、細胞影像、生物標記、螢光染劑。
The purpose of this research is to use metal nanoparticles (gold nanorods and
silver nanoparticles) as biomarkers for the cellular imaging of laser scanning confocal
microscopy (LSCM). The gold nanorods were synthesized by using electrochemical
method, whereas the silver nanoparticles were synthesized by oxidation-reduction
method. The absorption spectra and the morphologies of these metal nanoparticles
were identified by the Uv/Vis-Near IR spectrophotometer and TEM, respectively. For
our experiment, the aspect ratio of the gold nanorods is about 2.13, and the peak of
absorption spectrum is at 600 nm. For the silver nanoparticles, the peak of the
absorption spectrum is at 400nm. The cell of experiment is the human breast cancer
cell line (MDA-MB-435S). These cells were incubated with a medium containing
gold nanorods or silver nanoparticles, and then their nuclei were stained by Prodium
Iodide (PI) or 4,6-diamidino-2-phenylindole (DAPI). Different lasers (458, 488, 514,
561, and 633 nm) were used individually to illuminate these cells, and the ranges of
two bandpass filters were adjusted for the detection to separate the scattered light of
metal nanoparticles and the fluorescence of dyes. The advantage of this method is that
the scattered light from the metal nanoparticles and the fluorescence from PI or DAPI
can be induced simultaneously but be detected separately without crosstalk.
Subsequently, a compound cellular image of LSCM can be obtained by combining the
scattered light of metal nanoparticles and the fluorescence of dye molecules. The
scattering of light is caused by the surface plasmon resonance (SPR) of these metal
nanoparticles. In addition, cellular optical-section images of different depths were
acquired to identify that these nanoparticles are embedded in the cytoplasm. The TEM
images also show that several clusters of metal nanoparticles enclosed by vesicles are
distributed in the cytoplasm, due to the endocytosis of the cells. The aggregation of
nanoparticles makes the SPR band broadened, so that the scattered lights are observed
for different wavelength lasers. Furthermore, the two-photon cellular images were
obtained by using femtosecond ultra-pulse Ti: sapphire laser of 800 nm to excite these
nanoparticles and PI. Summarily, the metal nanoparticles can be potential biomarkers
to be combined with fluorescence dyes for the cellular imaging.
Keywords: Surface plasmon resonance, Laser scanning confocal microscopy, metal
nanoparticles, Nanorods, Cellular imaging, Biomarker, Fluorescence dye
指導教授推薦書
口試委員會審定書
授權書 ................................................... i
誌謝 ..................................................... ii
中文摘要 ................................................ iii
英文摘要 ................................................ iv
目錄 ..................................................... v
圖目錄 ................................................. viii
表目錄 .................................................. xv
第一章 緒論 ............................................ 1
1-1 前言 ............................................ 1
1-2 研究動機與目的 .................................. 3
第二章 研究背景 .......................................... 4
2-1 奈米粒子簡介.....................................4
2-1-1 金奈米粒子...................................7
2-1-2 銀奈米粒子..................................12
2-2 金屬奈米粒子的光學特性..........................13
2-3 共軛焦顯微鏡....................................16
vi
2-3-1 雷射共軛焦顯微鏡原理........................16
2-3-2 雙光子(多光子)共軛焦顯微鏡..................18
第三章 實驗方法......................................... 21
3-1 實驗藥品........................................21
3-2 儀器設備........................................22
3-3 實驗整體流程....................................23
3-4 金奈米桿的製備..................................24
3-5 銀奈米粒子的製備................................25
3-5-1 銀奈米桿的製備.............................26
3-6 紫外光/可見光-近紅外光光譜儀(UV/VIS-Near IR)光譜
分析...........................................26
3-7 穿透式電子顯微鏡(TEM)分析...................... 27
3-8 奈米粒子做為細胞影像媒介之實驗..................27
3-8-1 細胞培養.................................. 27
3-8-2 細胞毒性分析.............................. 28
3-8-3 細胞與奈米粒子共培養.......................29
3-8-4 細胞核染色.................................30
3-9 雷射/ 超快雷射共軛焦顯微鏡分析. . . . . . . . . . . .32
3-10 穿透式電子顯微鏡之細胞樣品製備.................33
vii
第四章 實驗結果與討論....................................34
4-1 金奈米桿的合成...............................34
4-2 銀奈米粒子的合成...............................35
4-3 細胞毒性分析.............................. 36
4-4 奈米粒子做為細胞影像媒介之實驗..............37
4-4-1 金奈米桿做為細胞影像媒介之實驗..........38
4-4-2 銀奈米粒子做為細胞影像媒介之實驗........44
4-4-3 螢光染劑與奈米粒子表現之比較...........47
4-4-4 超快雷射共軛焦顯微鏡之結果.............50
第五章 結論..........................................53
參考文獻...................... ....................95
附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
圖目錄
圖2-1 雷射消熔法之實驗裝置概圖 ......................... 8
圖2-2 金屬氣相合成法示意圖............................. 9
圖2-3 化學還原法之分類概圖............................ 10
圖2-4 奈米尺寸金屬顆粒之電化學法製備概圖 .............. 11
圖2-5 奈米粒子長短軸比與吸收峰間關係 .................. 14
圖2-6 金奈米粒桿長度與顏色變化圖 ...................... 15
圖2-7 共軛焦顯微鏡成像原理............................ 17
圖2-8 射掃描影像方式 ................................. 18
圖2-9 單光子與雙光子激發示意圖 ........................ 19
圖2-10 單光子與雙光子激發方式差異 ...................... 20
圖3-1 實驗整體流程圖 ................................. 23
圖3-2 金奈米桿實驗流程圖.............................. 25
圖3-3 細胞毒性分析方法示意圖 .......................... 29
圖3-4 PI 染劑的激發與放射波長範圍 ..................... 31
圖3-5 DAPI 染劑的激發與放射波長範圍 .................. 31
圖4-1 金奈米桿的Uv/Vis-Near IR 光譜圖,縱向表面電漿共振波
長在780nm ...................................... 58
圖4-2 金奈米桿(縱向表面電漿共振在780nm)之穿透式電子顯微鏡
影像 A.放大倍率150k B.放大倍率200k,長短軸比:3.37±
0.74 ............................................ 59
圖4-3 金奈米粒子的Uv-Vis Near IR 光譜圖,縱向表面電漿共振波
長在600nm ...................................... 60
圖4-4 金奈米桿(縱向表面電漿共振在600nm)之穿透式電子顯微鏡
iv
影像 A.放大倍率150k B.放大倍率200k C.放大倍率250,
長短軸比:2.13±0.32k .............................. 61
圖4-5 銀奈米粒子的UV/VIS-Near IR 光譜圖,表面電漿共振的特
徵吸收峰在400nm ................................ 62
圖4-6 銀奈米粒子之穿透式電子顯微鏡影像 A.放大倍率50k B.
放大倍率100k。銀奈米粒子平均粒徑為23.52±5.12nm … 63
圖4-7 不同特徵吸收峰之銀奈米桿的Uv/Vis-Near IR 光譜圖,種
晶量60λ吸收峰為591nm,種晶量200λ吸收峰為541nm,
種晶量300λ吸收峰為515nm,種晶量400λ吸收峰為509nm
................................................ 64
圖4-8 不同種晶量合成出不同長短軸比之銀奈米桿顏色示意圖
.............................................. 65
圖4-9 細胞毒性測試之四組條件,細胞株為L929 纖維母細胞,A.
以新鮮培養基培養,B. 以陽性對照組培養,含0.64%phenol,
C. 以陰性對照組培養,萃取培養盤之培養液D. 以金奈米
桿萃取液培養 ................................... 66
圖4-10 細胞毒性測試之四組條件,細胞株為L929 纖維母細胞,A.
以新鮮培養基培養,B. 以陽性對照組培養,含0.64%phenol,
C. 以陰性對照組培養,萃取培養盤之培養液D. 以銀奈米
粒子萃取液培養 ................................. 67
圖4-11 MDA-MB-435S之細胞形態比較與生長情形 A.未攝入金奈
米桿B.攝入金奈米桿培養3 天 .................... 68
圖4-12 MDA-MB-435S 之細胞形態比較與生長情形 A.未攝入銀奈
米粒子B.攝入銀奈米粒子培養3 天 ................. 69
v
圖4-13 金奈米桿吞噬實驗對照組,435s 細胞染PI 染劑以458nm 雷
射激發之共軛焦顯微鏡影像,A. Filter:432-496 之雷射光影
像,B. 穿透光之細胞形態影像,C. Filter:593-636,D. A-C
之重疊影像,放大倍率為63 倍 ..................... 70
圖4-14 金奈米桿吞噬實驗對照組,435s 細胞染PI 染劑後分別在A.
458nm B.488nm C.514nm D.561nm E.633nm 雷射下
的影像,放大倍率為63 倍 ......................... 71
圖4-15 特徵吸收峰在600nm,O.D. 1.1 的金奈米桿與435s 細胞共
培養,以458nm 雷射激發之斷層掃描影像,由細胞底部掃
描至細胞頂部,放大倍率為63 倍 ................... 72
圖4-16 特徵吸收峰在600nm,O.D. 1.1 的金奈米桿與435s 細胞共
培養,以488nm 雷射激發之斷層掃描影像,由細胞底部掃
描至細胞頂部,放大倍率為63 倍 ................... 73
圖4-17 特徵吸收峰在600nm,O.D. 1.1 的金奈米桿與435s 細胞共
培養,以514nm 雷射激發之斷層掃描影像,由細胞底部掃
描至細胞頂部,放大倍率為63 倍 ................... 74
圖4-18 特徵吸收峰在600nm,O.D. 1.1 的金奈米桿與435s 細胞共
培養,以561nm 雷射激發之斷層掃描影像,由細胞底部掃
描至細胞頂部,放大倍率為63 倍 ................... 75
圖4-19 特徵吸收峰在600nm,O.D. 1.1 的金奈米桿與435s 細胞共
培養,以633nm 雷射激發之斷層掃描影像,由細胞底部掃
描至細胞頂部,放大倍率為63 倍 ................... 76
圖4-20 金奈米桿之表面電漿共振光譜與PI 染劑的激發、放射光譜,
開二個Filter,Filter-I 為接收金奈米桿之散射光,Filter-II 接
vi
收PI 染劑之放射螢光 ............................. 77
圖4-21 特徵吸收峰在600nm,O.D. 1.1 的金奈米桿與435s 細胞共
培養, 使用A. 458nm B.488nm C.514nm D.561nm
E.633nm 雷射激發之細胞底部影像,放大倍率為63 倍...78
圖4-22 特徵吸收峰在600nm,O.D. 1.1 的金奈米桿與435s 細胞共
培養, 使用A. 458nm B.488nm C.514nm D.561nm
E.633nm 雷射激發之3-D 投影影像,放大倍率為63 倍...79
圖4-23 O.D. 0.5 之金奈米桿與MDA-MB-435S 細胞培養24 小時之
穿透式電子顯微鏡影像 A.435S 細胞全貌,放大6000 倍 B.
局部放大15 萬倍 C.局部放大30 萬倍 ............... 80
圖4-24 銀奈米粒子吞噬實驗對照組,435S 細胞染PI 染劑後分別在
A. 458nm B.488nm C.514nm D.561nm E.633nm 雷射
下的影像,放大倍率為63 倍 ....................... 81
圖4-25 特徵吸收峰在400nm,O.D. 1 的銀奈米粒子與435S 細胞共
培養,以458nm 雷射激發之斷層掃描影像,由細胞底部掃
描至細胞頂部,放大倍率為63 倍 ................... 82
圖4-26 特徵吸收峰在400nm,O.D. 1 的銀奈米粒子與435S 細胞共
培養,以488nm 雷射激發之斷層掃描影像,由細胞底部掃
描至細胞頂部,放大倍率為63 倍 ................... 83
圖4-27 特徵吸收峰在400nm,O.D. 1 的銀奈米粒子與435S 細胞共
培養,以514nm 雷射激發之斷層掃描影像,由細胞底部掃
描至細胞頂部,放大倍率為63 倍 ................... 84
圖4-28 特徵吸收峰在400nm,O.D. 1 的銀奈米粒子與435S 細胞共
培養,以561nm 雷射激發之斷層掃描影像,由細胞底部掃
vii
描至細胞頂部,放大倍率為63 倍 ................... 85
圖4-29 特徵吸收峰在400nm,O.D. 1 的銀奈米粒子與435S 細胞共
培養,以633nm 雷射激發之斷層掃描影像,由細胞底部掃
描至細胞頂部,放大倍率為63 倍 ................... 86
圖4-30 銀奈米粒子與435S 細胞共培養,使用A. 458nm B.488nm
C.514nm D.561nm E.633nm 雷射激發之細胞底部影像,
放大倍率為63 倍 ................................. 87
圖4-31 銀奈米粒子與435S 細胞共培養,使用A. 458nm B.488nm
C.514nm D.561nm E.633nm 雷射激發之3-D 投影影像,
放大倍率為63 倍 ................................. 88
圖4-32 金奈米桿吞噬實驗對照組,435S 細胞染DAPI 染劑後,Filter-
Ι 使用A. 458nm B.488nm C.514nm D.561nm
E.633nm 雷射激發金奈米桿,Filter-Π使用405nm 雷射激發
DAPI 影像之細胞底部影像,放大倍率為100 倍 ....... 89
圖4-33 特徵吸收峰在600nm,O.D. 1 的金奈米桿與435S 細胞共培
養, 染DAPI 染劑, Filter- Ι 使用A.458nm B.488nm
C.514nm D.561nm E.633nm 雷射激發金奈米桿,Filter-
Π使用405nm 雷射激發DAPI 影像之細胞底部影像,放大倍
率為100 倍 ...................................... 90
圖4-34 銀奈米粒子吞噬實驗對照組,435s 細胞染DAPI 染劑後,
Filter-Ι使用A. 458nm B.488nm C.514nm D.561nm
E.633nm 雷射激發金奈米桿,Filter-Π使用405nm 雷射激發
DAPI 影像之細胞底部影像,放大倍率為100 倍 ....... 91
圖4-35 特徵吸收峰在400nm,O.D.1 的銀奈米粒子與435s 細胞共
viii
培養,染DAPI 染劑,Filter-Ι使用A.458nm B.488nm
C.514nm D.561nm E.633nm 雷射激發銀奈米粒子,Filter-
Π使用405nm 雷射激發DAPI 影像之細胞底部影像,倍率為
100 倍 .......................................... 92
圖4-36 特徵吸收峰在600nm,O.D. 1.1 的金奈米桿與435S 細胞共
培養,染PI 染劑,使用超快雷射激發金奈米桿,A.
Filter:600-800nm B. Filter:500-550nm,C. A.與B.之合成圖,
倍率為63 倍 ..................................... 93
圖4-37 特徵吸收峰在400nm,O.D. 1 的銀奈米粒子與435S 細胞共
培養,染PI 染劑,使用超快雷射激發銀奈米粒子,A.
Filter:400-500nm B. Filter:500-600nm,C. Filter:600-700nm,
倍率為63 倍 ..................................... 94
ix
表目錄
表一 奈米粒子中表面原子數佔原子數之比率與粒徑的關係 ..... 4
表二 雷射光源之對應波長與功率大小 ...................... 32
表三 金奈米桿之細胞毒性測試結果.........................56
表四 銀奈米粒子之細胞毒性測試結果.......................56
表五 各波長雷射下二組Filter範圍,Filter-Ι接收金奈米桿之散射光,
Filter-Π 接收螢光染劑PI 的放射螢光....................56
表六 各波長雷射下二組Filter 範圍,Filter-Ι 接收銀奈米粒子之散射
光,Filter-Π 接收螢光染劑PI 的放射螢光.................57
表七 各波長雷射下二組Filter範圍,Filter-Ι接收金奈米桿之散射光,
Filter-Π 接收螢光染劑DAPI 的放射螢光.................57
表八 各波長雷射下二組Filter 範圍,Filter-Ι 接收銀奈米粒子之散射
光,Filter-Π 接收螢光染劑DAPI 的放射螢光..............57
參考文獻
[1]. R. Hardman, “A Toxicological Review of Quantum Dots: Toxicity
Depends on Physico-Chemical and Environmental Factors,”
Environmental Health Perspectives, vol. 114, pp. 165-172, 2005.
[2]. Y. Zhang, N. Kohler, and M. Zhang, "Surface modification of
superpara-magnetic magnetite nanoparticles and their intracellular
uptake," Biomaterials, vol. 23, pp. 1553-1561, 2002.
[3]. E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy and M.D. Wyatt,
“Gold nanoparticles are taken up by human cells but do not cause
acute cytotoxicity,” Small, vol. 1, pp. 325 -327, 2005.
[4]. A. S. Edelstein and R. C. Cammarata, “Nanomaterials: Synthesis,
Properties and Applications, “ Institute of Physics, Bristol, pp. 3-10,
1996.
[5]. J. H. Fendler, Nanoparticles and Nanostructured Film:Preparation,
Characterization Applications: Wiley-VCH, New York, 1998.
[6]. A. N. Goldstein, Handbook of Nanophase Materials, Marcel Dekker,
New York, 1997.
[7]. G. Schimid, Clusters and Colloids:From Theory to Application,
Wiley-VCH, New York, 1994.
[8]. R. W. Siegel, E. Hu, and M. C. Roco, WTEC panel report on
nanostructure science and technology: R & D status and trends in
nanoparticles, nanostructured materials, and nanodevices, Kluwer
Academic, Boston, 1999.
[9]. 王崇人,神奇的奈米科學,《科學發展》, 354 期, 48 頁,民國
-96-
九十一年。
[10]. 張立德,牟秀美,《奈米材料與奈米結構》,科學出版社,民國九
十年。
[11]. 呂宗昕,《圖解奈米科技與光觸媒》,第三章:103 頁,商周出版,
民國九十二年。
[12]. 陳東煌,複合奈米粒子,《科學發展》, 408 期, 48 頁,民國九
十五年。
[13]. M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh and C. S. Yeh, ”
Formation and Characteristics of Cu Colloids from CuO Powder by
Laser Irradiation in 2-Propanol,” J. Phys. Chem. B, vol. 103, pp.
6851-6857, 1999.
[14]. N. R. Jana, L. Gearheart and C. J. Murphy, “Seed-Mediated Growth
Approach for Shape-Controlled Synthesis of Spheroidal and
Rod-like Gold Nanoparticles Using a Surfactant Template,” Adv.
Mater., vol. 13, pp. 1389-1393, 2001.
[15]. J. H. Liu, A. Q. Wang, Y. S. Chi, H. P. Lin and C. Y. Mou,
“Synergistic Effect in an Au-Ag Alloy Nanocatalyst: CO Oxidation ,”
J. Phys. Chem. B, vol. 109, pp. 40-43, 2005.
[16]. W. Yan, S. M. Mahurin, B. Chen, S. H. Overbury and S. Dai, “Effect
of Supporting Surface Layers on Catalytic Activities of Gold
Nanoparticles in CO Oxidation,” J. Phys. Chem. B, vol. 109, pp.
15489-15496, 2005.
[17]. P. Santhosh, A. Gopalan and K. P. Lee, ” Gold nanoparticles
-97-
dispersed polyaniline grafted multiwall carbon nanotubes as newer
electrocatalysts: Preparation and performances for methanol
oxidation,” J. Catalysis, vol. 238, pp. 177-185, 2006.
[18]. M. S. El-Deab and T. Ohsaka, “Hydrodynamic voltammetric studies
of the oxygen reduction at gold nanoparticles-electrodeposited gold
electrodes,” Electrochim. Acta, vol. 47, pp. 4255-4261, 2002.
[19]. J. B. Carroll, B. L. Frankamp and V. M. Rotello, Chem. Commun ,
pp. 1892, 2002.
[20]. P. Sandstrom, M. Boncheva and B. Akerman, “Nonspecific and
Thiol-Specific Binding of DNA to Gold Nanoparticles,“ Langmuir,
vol. 19, pp. 7537-7543, 2003.
[21]. B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth
Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth
Method,” Chem. Mater., vol. 15, pp. 1957-1962, 2003.
[22]. N. Nath and A. Chilkoti, “A Colorimetric Gold Nanoparticle Sensor
To Interrogate Biomolecular Interactions in Real Time on a Surface,”
Anal. Chem., vol. 74, pp. 504-509, 2002.
[23]. Huang X, El-Sayed IH, Qian W, and EI-Sayed MA, “Cancer Cell
Imaging and Photothermal Therapy in the Near-Infrared Region by
Using Gold Nanorods,” J Am Chem Soc, vol. 128, pp. 2115-2120,
2006.
[24]. 邱崙捷,〈磁性奈米顆粒和抗癌藥Doxorubicin 之體內及體外抗腫
瘤實驗〉,成功大學,碩士論文,民國九十三年。
[25]. J. Turkevich, P. C. Stevenson and J. Hillier, Discuss. Faraday Soc,
-98-
vol. 11, pp. 55-75, 1951.
[26]. M. Giersig and P. Mulvaney, “Preparation of ordered colloid
monolayers by electrophoretic deposition,” Langmuir, vol. 9, pp.
3408-3413, 1993.
[27]. 郭清癸,黃俊傑,牟中原,《物理雙月刊》,23 卷6 期,民國九
十年。
[28]. Y. Y. Yu, S. S. Chang, C. L. Lee and C. R. Chris Wang, “Gold
Nanorods: Electrochemical Synthesis and Optical Properties,” J.
Phys. Chem. B, vol. 101, pp. 6661-6664, 1997.
[29]. B. D. Busbee, S. O. Obare, and C. J. Murphy, “An Improved
Synthesis of High-Aspect-Ratio Gold Nanorods,” Adv. Mater., vol.
13, pp. 1389-1393, 2001.
[30]. T. K. Sau and C. J. Murphy, “Seeded High Yield Synthesis of Short
Au Nanorods in Aqueous Solution ,” Langmuir, vol. 20, pp.
6414-6420, 2004.
[31]. C. J. Murphy and N. R. Jana, “Controlling the Aspect Ratio of
Inorganic Nanorods and Nanowires,” Adv. Mater., vol. 14, pp. 80-82,
2002.
[32]. M. T. Reetz, M. Winter, R. Breinbauer, T. A. Thomas and W. Vogel,
“Size-Selective Electrochemical Preparation of Surfactant-Stabilized
Pd-, Ni- and Pt/Pd Colloids,” Chem. Eur. J., vol. 7, pp. 1084-1094,
2001.
[33]. X. Z. Lin, X. Teng and H. Yang “Direct Synthesis of Narrowly
Dispersed Silver Nanoparticles Using a Single-Source
-99-
Precursor,“ Langmuir, vol. 19, pp. 10081-10085, 2003.
[34]. Y. U. Seo, S. J. Lee and K. Kim, “Thermal/Photo Conversion of
Silver 4-Nitrobenzoate to Nitro/Amine-Terminated Silver
Nanoparticles,” J. Phys. Chem. B, vol. 108, pp. 4000-4007, 2004.
[35]. M. Cavicchioli, L. C. Varanda, A. C.Massabni and P. Melnikov,
“Silver nanoparticles synthesized by thermal reduction of a
silver(I)–aspartame complex in inert atmosphere,” Mater. Lett., vol.
59, pp. 3585-3589, 2005.
[36]. T. K. Chen, W. T. Chen, M. C. Yang and M. S. Wong,
“Thermal-induced formation of silver nanowires on titanium dioxide
thin films,” J. Vac. Sci. B, vol. 23, pp. 2261-2265, 2005.
[37]. K. Uosaki, Y. Sato and H. Kito, “Electrochemical characteristics of a
gold electrode modified with a self-assembled monolayer of
ferrocenylalkanethiols,” Langmuir, vol. 7, pp. 1510-1514, 1991.
[38]. S. S. Chang and C. R. C. Wang, “金屬奈米粒子的吸收光譜, ”The
Chinese Chem. Soc., vol. 56, pp. 209-222, 1998.
[39]. T. Yamazaki, I. Komuro, and Y. Yazaki, “Molecular mechanism of
cardiac cellular hypertrophy by mechanical stress,” J. Mol. Cell
Cardiol, vol. 27, pp. 133-140, 1995.
[40]. M. Born and E. Wolf, Principles of optics, Pergamon Press, Oxford,
1980.
[41]. W. Denk, J. H. Strickler and W. W. Webb, “Two-photon laser
scanning fluorescence microscopy,” Science, vol. 248, pp. 73-76,
1990.
-100-
[42]. 徐華蔓,Laser Confocal Microscope Basic Training,台灣儀器行,
民國九十六年。
[43]. 徐華蔓,Multiphoton Laser Scanning Microscope,台灣儀器行,
民國九十六年。
[44]. S. Chen, Z. Fan, and D. L. Carroll, “Silver Nanodisks: Synthesis,
Characterization, and Self-Assembly,” J. Phys. Chem. B, vol. 106, pp.
10777-10781, 2002.
[45]. R. J. Nikhil, L. Gearheart and J. M. Catherine , “Wet chemical
synthesis of silver nanorods and nanowires of controllable aspect
ratio,” Chem. Commun., vol. 7, pp. 617–618, 2001.
[46]. B.D. Chithrani, A.A. Ghazani, and W.C.W. Chan, “Determining the
Size and Shape Dependence of Gold Nanoparticle Uptake into
Mammalian Cells,” Nano letters, vol. 6, pp. 662-668, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊