|
Pahl HL, Baeuerle PA. Oxygen and the control of gene expression. .Bioessays. 16:497–502, 1994.
Ferguson HA, Marietta PM, Van Den Berg CL. UV-induced apoptosis is mediated independent of caspase-9 in MCF-7 cells: a model for cytochrome c resistance. THE JOURNAL OF BIOLOGICAL CHEMISTRY . 278: 45793–45800, 2003.
Bhawan J, Olsen E, Lufrano L, Thorne EG, Schwab B and Gilchrest BA. Histologic evaluation of the long term effects of tretinoin on photodamaged skin. J. Dermatol. Sci. 11: 177-182, 1996.
Hiroyuki Yasui, Hiromu Sakurai. Essential role of singlet oxygen species in cytochrome P450-dependent substrate oxygenation by rat liver microsomes. Biochemicaland Biophysical Research Communication. ,269(2):131-136, 2000.
Yasui H, Fujii S, Yoshimura T, Sakurai H. Spinnokinetic analyses of blood disposition and biliary excretion of nitric oxide (NO)-Fe(II)-N-(dithiocarboxy)sarcosine complex in rats: BCM-ESR and BEM-ESR studies. Free Radic Res. 38(10):1061-72, 2004.
Mittal A, Elmets CA, Katiyar SK. CD11b+ cells are the major source of oxidative stress in UV radiation-irradiated skin: possible role in photoaging and photocarcinogenesis. Photochem Photobiol. 77(3):259-264, 2003.
Fisher GJ. The pathophysiology of photoaging of the skin. Cutis, 75(2):5-8, 2005.
Sehrawat A, Sharma S, Sultana S. Preventive effect of tannic acid on 2-acetylaminofluorene induced antioxidant level, tumor promotion and hepatotoxicity: a chemopreventive study. Redox Rep. 11, 85–95, 2006.
Chen SC, Chung KT. Mutagenicity and antimutagenicity studies of tannic acid and its related compounds. Food Chem. Toxicol. 38: 1–5, 2000.
Szaefer H, Kaczmarek J, Rybczynska M, Baer-Dubowska W. The effect of plant phenols on the expression and activity of phorbol ester-induced PKC in mouse epidermis. Toxicology .230: 1–10, 2007.
Buttke TM, Sandstrom PA . Oxidative stress as a mediator of apoptosis. Immunol.Today 15: 7-10,1994.
Cai J, Yang J, Jones DP . Mitochondrial control of apoptosis: the role of cytochrome C. Biochim Biophys Acta 1366:139-149,1998.
Chan W-H, Yu J-S, Yang S-D . Heat shock stress induces cleavage and activation of PAK2 in apoptotic cells. J Protein Chem 17:485-494, 1998.
Chan W-H, Yu J-S, Yang S-D . PAK2 is cleaved and activation during hyperosmotic shock-induced apoptosis via a caspase- dependent mechanism. Evidence for the involvement of oxidative stress. J Cell Physiol 178: 397-408, 1999.
Chan and Yu . Inhibition of UV irradiation-induced oxidative stresses and apoptotic biochemical changes in human epidermal carcinoma A431 cells by genistein. J Cell Biochem 78:73-84, 2000.
Ellis RE, Yuan J-Y, Horvitz HR . Mechanisms and functions of cell death. Ann Rev Cell Biol 7: 663-698,1991.
Green DR, Reed JC . Mitochondria and apoptosis. Science 281: 309-1312, 1998.
Jacobson, M. D., Weil, M., and Raff, M. C. Programmed cell death in animal development. Cell 88:347-354, 1997.
Lenaz G, Bovina C, Formiggini G, Castelli GP . Mitochondria, oxidative stress and antioxidant defences. Acta Biochim Pol 46:1-21, 1999
Thiele J, Elsner P. Oxidants and Antioxidants in Cutaneous Biology. Curr Probl Dermatol. 29:83-94, 2001.
Christine D, Isabelle K. Induction of thioredoxin by ultraviolet-A radiation prevents oxidative-mediated cell death in human skin fibroblast. Free Radical Biology&Medicine. 31:585-598, 2001.
Cecilia A.B., Petra K.L., Katarina M.K. UVA/B induced apoptosis in human melanocytes involves translocation of Cathepsins and Bcl-2 family members. Jounal of Investigative Dermatology. 52:937-945, 2002.
Ching H.C., Tsan Z.L., Chin H.C., Chung H.W., Chi H.C., Fung J.L. The efficacy of protective effects of tannic acid, gallic acid, ellagic acid, and propyl gallate against hydrogen peroxide-induced oxidative stress and DNA damages in IMR-90 cells. Mol.Nutr.Food.Res. 51:962-968, 2007.
Eung R.L., Jung H.K., Yong J.K., Ssang G.C. The anti-apoptotic and anti-oxidant effect of Eriodictyol on UV-induced apoptosis in Keratinocytes. Biol. Pharm. Bull. 30:32-37, 2007.
Alena Svobodova, Daniela Walterova, Jitka Vostalova. Ultraviolet light induced alteration to the skin. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 150(1):25-38, 2006.
Matthias S.,Hue-Tran Hornig-Do, Sarah Schomberg, Gernot Herrmann, Rudolf J. Mitochondrial electron transport chain activity is not involved in ultraviolet A (UVA)-induced cell death. Free Radical Biology & Medicine. 42:499-509, 2007.
Hirokazu W., Tadamichi S.,Jun N. Ultraviolet A-induced production of Matrix Metalloproteinase-1 is mediated by macrophage migration inhibitory factor (MIF) in human dermal fibroblast. The Journal Of Biological Chemistry. 279(3): 1676-1683, 2004.
Antonio V., Anpuchchelvi R., A. Bjorn Carle, Irene E. Kochevar. 7-Dehydrocholesterol enhances ultraviolet A-induced oxidative stress in keratinocytes: Roles of NADPH oxidase, mitochondria, and lipid rafts. Free Radical Biology & Medicine 41:1704-1718,2006.
Laure Rittie’, Gary J. Fisher. UV-light-induced signal cascades and skin aging. Ageing Research Reviews. 1:705-720, 2002.
Herrmann G., Wlaschek M., Lange TS., Prenzel K.,Goerz G., Scharffetter-Kochanek K. UVA irradiation stimulates the synthesis of various matrix-metalloproteinases (MMPs) in cultured human fibroblast. Exp Dermatol. 2(2):92-97, 1993.
Scharffetter K, Wlaschek M, Hogg A, Bolsen K, Schothorst A, Goerz G, Krieg T. UVA irradiation induces collagenase in human dermal fibroblasts in vitroand in vivo. Arch Dermatol Res. 283(8): 506-511, 1991.
Naru E., Suzuki T., Moriyama M., Inomata K., Hayashi A., Arakane K., Kaji K. Functional changes induced by chronic UVA irradiation to cultured human dermal fibroblasts. Br J Dermatol. 2: 6-12, 2005.
Toblas P., Rex M. Tyrrell. Involvement of lipid peroxidation and organic peroxides in UVA-induced matrix metalloproteinase-1 expression. Free Radical Biology & Medicine. 36: 1566-1575, 2004.
Yu-Ying H., Jian-li H., Colin F. C. Delayed and sustained activation of extracellular signal-regulated kinase in human keratinocytes by UVA. The Journal Of Biological Chemistry. 279:53867-53874, 2004.
Ming K.S., Ching H.C., Tsan Z.L. Exacerbation of UVA-induced mitochondrial dysfunction of human SK-Hep-1 cells by Ferrous Ions. J Biomed Lab Sci .13:24-28, 2001.
Bor-Show T., Yun-Jung C., Hsin-Chieh L., Chu-Bin L. Tuning up or down the UV-induced apoptosis in chinses hamster ovary cells with cell cycle inhibitors. Photochemistry and Photobiology. 75(6): 662-667, 2002.
Sehrawat, A., Sharma, S., Sultana, S., Preventive effect of tannic acid on 2-acetylaminofluorene induced antioxidant level, tumor promotion and hepatotoxicity: A chemopreventive study. Redox Rep. 11: 85–95, 2006.
Wu, L. T., Chu, C. C., Chung, J. G., Chen, C. H. et al., Effects of tannic acid and its related compounds on food mutagens or hydrogen peroxide-induced DNA strands breaks in human lymphocytes. Mutat. Res. 556: 75–82, 2004.
Chen, S. C., Chung, K. T., Mutagenicity and antimutagenicity of tannic acid and its related compounds. Food Chem. Toxicol.38: 1–5, 2000.
Kuo, M. L., Lee, K. C., Lin, J. K., Genotoxicities of nitropyrenes and their Modulation by apigenin, tannic acid, ellagic acid and indole-carbinol in Salmonella and CHO systems. Mutat. Res. 270: 87 –95, 2000.
Szaefer, H., Kaczmarek, J., Rybczynska, M., Baer-Dubowska, W., The effect of plant phenols on the expression and activity of phorbol ester-induced PKC in mouse epidermis. Toxicology 230:1–10, 2007.
Loarca-Pina, G., Kuzmicky, P. A., Gonzalez de Mejia, E., Kado, N. Y. et al., Antimutagenicity of ellagic acid against aflatoxin B1 in the Salmonella microsuspension assay. Mutat.Res. 360: 15–21, 1996.
Loarca-Pina, G., Kuzmicky, P. A., de Mejia, E. G., Kado, N. Y., Inhibitory effects of ellagic acid on the direct-acting mutagenicity of aflatoxin B1 in the Salmonella microsuspension assay. Mutat. Res. 398:183–187, 1998.
Wang, Z. Y., Cheng, S. J., Zhou, Z. C., Athar, M. et al., Antimutagenicity activity of green tea polyphenols. Mutat. Res.223:273 –285, 1989.
Falsig, J., Christiansen, S. H., Feuerhahn, S., Burkle, A. et al.,Poly(ADP-ribose) glycohydrolase as a target for neuroprotective intervention: Assessment of currently available pharmacological tools. Eur. J. Pharmacol. 497: 7–16, 2004.
Khan, N. S., Ahmad, A., Hadi, S. M., Anti-oxidant, prooxidant properties of tannic acid and its binding to DNA. Chem. Biol. Interact. 125: 177 –189, 2000.
Labieniec, M., Gabryelak, T., Falcioni, G., Antioxidant and prooxidant effects of tannins in digestive cells of the freshwater mussel Unio tumidus. Mutat. Res. 539: 19–28, 2003.
Tsai, C. H., Chern, C. L., Liu, T. Z., Antioxidant action of glutathione: Its reaction with superoxide anion and hydroxyl radicals. J. Biomed. Lab. Sci. 12: 107 –111, 2000.
Munday, R., Winterbourn, C. C., Reduced glutathione in combination with superoxide dismutase as an important biological antioxidant defense mechanism. Biochem. Pharmacol.38: 4349 –4352, 1989.
Winterbourn, C. C., Metodiewa, D., The reaction of superoxide with reduced glutathione. Arch. Biochem. Biophys. 314: 284–290, 1994.
Yamauchi, N., Watenabe, N., Kuriyama, H., Suppressive effects of intracellular glutathione on hydroxyl radical production induced by tumor necrosis factor. Int. J. Cancer. 46: 884–886, 1990.
McNeil, C. J., Banford, J. C., Brown, D. H., A relationship between thiols and the superoxide ion. FEBS Lett. 133:175–179,1981.
Karihtala, P., Soini, Y., Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies.APMIS . 115: 81–103, 2007.
Bahar, G., Feinmesser, R., Shpitzer, T., Popovtzer, A., Nagler,R. M., Salivary analysis in oral cancer patients: DNA and protein oxidation, reactive nitrogen species, and antioxidant profile.Cancer . 109: 54–59, 2007.
|