跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/13 10:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳欣瑜
研究生(外文):Hsin Yu Wu
論文名稱:發展性協調障礙孩童雙手協調與腦電生理特性之探討
論文名稱(外文):Bimanual coordination and brain electrophysiology in children with Developmental Coordination Disorder
指導教授:孟令夫孟令夫引用關係
指導教授(外文):L.F. Meng
學位類別:碩士
校院名稱:長庚大學
系所名稱:臨床行為科學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:157
中文關鍵詞:發展性協調障礙雙手協調手指按鍵事件相關電位聚合程度動作相關腦電波同向按鍵反向按鍵
外文關鍵詞:Developmental Coordination Disorderbimanual coordinationfinger-tappingevent-related potentialscoherencemovement-related cortical potentialsinphase tappingantiphase tapping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
背景與目的:「發展性協調障礙」(developmental coordination disorder, 簡稱DCD)為一群在執行與動作協調相關活動時,表現弱於生理年齡及其智力所期待標準以下的孩童,同時此動作障礙明顯影響到學業與日常生活參予,並且需排除由一般疾病、廣泛性發展疾患(pervasive developmental disorder)或智能不足所致之障礙。目前研究大多以行為層面探討DCD的動作障礙,認為此類孩童的動作品質不論在時間與空間面向之表現皆比正常孩童差,但在大腦運作機制上的探討仍較缺乏,導致無法充分解釋DCD的外顯行為表現,本研究將利用事件相關電位(event-related potentials, 簡稱ERPs)分析DCD孩童執行協調動作時在不同動作階段的頻帶聚合與成分波,包括:動作準備期、動作執行期與動作回饋期三階段,以了解DCD孩童在執行協調任務時各階段的大腦運作特性暨其與動作障礙之關聯。

研究方法:樣本包括DCD與正常孩童各9位,兩組樣本依照年齡與性別配對。四種視覺刺激情境(左、右、同向、反向)採混合區塊(mixed block)與假性隨機(pseudo-randomization)設計並以STIM 2軟體呈現,個案須依視覺刺激執行對應的四種按鍵反應。另利用腦波儀器(Brain Amp MR)收取與分析腦波及右手橈側伸腕肌(extensor carpi radialis,簡稱ECR)之肌電生理訊號。在行為資料上,包括(1)反應時間、(2)雙手按鍵時間差、(3)正確率;在電生理資料上,包括(1)肌肉活化時間動作輸出時間、(2)額葉區、中央區、頂葉區、中央-額葉區、頂葉-額葉區、頂葉-中央區之電極間的α與β頻帶聚合程度、(3)各階段成分波平均振幅。統計檢定採用二因子混合設計變異數分析。

結果:在行為表現上,DCD組僅於反向按鍵時的正確率顯著低於對照組。於腦電生理則有以下發現,(1)在反向按鍵的動作執行期,DCD組在Pz電極的動作皮質波(Movment Cortical Potential, MCP)和運動後電位波(Re-afferent Potential, RAP)平均振幅大於對照組且趨向正值;(2)同向按鍵的動作執行期,DCD組Pz、C3與C4電極的RAP平均振幅大於對照組且趨向正值;(3)而在頻帶聚合程度(Coherence)上未呈現組間差異。

討論與結論:DCD孩童執行雙手按鍵任務時的大腦運作與一般孩童之差異主要發生在動作執行階段時的MCP與RAP,於此階段DCD孩童需藉由皮質中央區與頂葉區之過度活化來代償同向與反向運作的缺失。但是,在複雜度較高的反向任務中,此代償機制並無法有效的使DCD的動作表現提升到與對照組相似。故DCD孩童之大腦運作效能於反向按鍵時較弱,且主要反映在動作執行期頂葉區之MCP與RAP。
Abstract
This study investigates the relationship of bimanual coordination difficulties in DCD children with movement-related cortical potentials (MRCPs) and cortical coherence during the preparation, execution and feedback phase respectively. Eighteen children (9 DCD and 9 Controls) with ages ranged from 8 to 12 years participated in the study. Children were required to perform unimanual tapping with right and left conditions and bimanual tapping with antiphase and inphase condition respectively, while a 32-channel EEG was recorded including 4 channels used to record EMG.

DCD children did not show any difference in coherence among paired electrode-connections, as compared to controls. The major differences occurred on the components of MRCPs and only in the execution phase. While comparing with controls, the DCDs had significantly larger mortor cortex potential (MCP) and re-afferent potential (RAP) amplitudes at Pz in the antiphase condition and had larger RAP at Pz, C3 and C 4 in the inphase condition.

The evidence of this study suggests that DCDs display brain activity that is different from controls, as the Pz, C3, C4 seems to be activated more to compensate for inefficient cortical operation. This compensation makes DCDs perform not worse than the controls during the bimanual inphase tapping task. However, even the Pz activated stronger, the DCDs still could not compete with the controls while performing the bimanual antiphase tapping task. In conclusion, the MRCPs demonstrated in the execution phase during bimanual movements are critical and meaningful while substantiating the coordination difficulties in children with DCD.
目錄
指導教授推薦書---------------------------------------------ii
口試委員審定書--------------------------------------------iii
紙本論文著作授權書------------------------------------------iv
致謝-------------------------------------------------------v
中文摘要--------------------------------------------------vii
英文摘要--------------------------------------------------ix
目錄------------------------------------------------------xi
表目錄-------------------------------------------------xviii
圖目錄---------------------------------------------------xix
第一章 緒論
第一節 前言-----------------------------------------------1
第二節 研究動機與目的---------------------------------------1
第三節 重要名詞解釋----------------------------------------2
壹、手指敲擊模式------------------------------------2
貳、事件相關電位------------------------------------3
參、聚合現象---------------------------------------4

第二章 文獻回顧
第一節 DCD的協調動作表現-----------------------------------5
壹、外顯行為表現特性--------------------------------5
貳、DCD的動作協調腦電生理特性探討--------------------7
參、DCD動作協調障礙理論與假說-----------------------9
第二節 雙側協調理論---------------------------------------12
壹、類化動作程式理論-------------------------------12
貳、雙側交錯理論-----------------------------------13
參、動態系統理論-----------------------------------14
第三節 雙側上肢協調研究------------------------------------16
壹、同向與反向按鍵行為特性--------------------------16
貳、雙側按鍵之大腦活化區域探究(影像學研究)----------17
參、雙側按鍵之腦電生理研究--------------------------19
第四節 研究提問與假設--------------------------------------28

第三章 研究方法
第一節 研究架構--------------------------------------------29
壹、研究架構---------------------------------------29
貳、變項定義---------------------------------------30
第二節 研究設計-------------------------------------------31
壹、研究對象---------------------------------------31
貳、研究工具---------------------------------------32
參、施測情境與程序----------------------------------41
第三節 任務設計與資料處理-----------------------------------42
壹、實驗派典---------------------------------------42
貳、資料擷取與分析----------------------------------46
第四節 資料分析與統計--------------------------------------54
壹、變項特性---------------------------------------54
貳、統計方法---------------------------------------55

第四章 研究結果
第一節 基本資料與控制變項----------------------------------56
壹、基本資料--------------------------------------56
貳、自變項----------------------------------------58
參、控制變項--------------------------------------58
第二節 依變項資料-----------------------------------------59
壹、按鍵行為資料-----------------------------------59
貳、樣本間之肌電生理資料----------------------------61
參、聚合程度資料-----------------------------------64
肆、成份波振幅資料----------------------------------67
第五章 討論
第一節 組間的控制------------------------------------------72
壹、組別特性與人口學資料-----------------------------72
貳、控制變項---------------------------------------72
參、與自變項相關之評量------------------------------72
第二節 組間的按鍵行為表現-----------------------------------74
第三節 組間的電生理特性-------------------------------------74
壹、肌電生理---------------------------------------74
貳、腦電生理---------------------------------------75
第四節 任務間之特性----------------------------------------81
壹、按鍵行為資料------------------------------------81
貳、腦電生理資料------------------------------------81

第六章 研究結論與限制
第一節 結論-----------------------------------------------84
第二節 研究限制--------------------------------------------85
壹、樣本數與樣本年齡分佈-----------------------------85
貳、DCD亞型與異質性之差異---------------------------85
參、任務設計與資料分析------------------------------87
第三節 臨床應用--------------------------------------------91


參考資料
中文參考文獻-----------------------------------------------92
西文參考文獻-----------------------------------------------92
附錄
附錄1、PEGS家長問卷---------------------------------------103
附錄2、基本資料問卷表--------------------------------------105
附錄3、慣用手問卷------------------------------------------107
附錄4、愛丁堡手側化量表------------------------------------108
附錄5、慣用眼側化評量--------------------------------------108
附錄6、慣用耳側化評量--------------------------------------108
附錄7、慣用腳側化評量--------------------------------------109
附錄8-1、常識測驗-----------------------------------------110
附錄8-2、類同測驗-----------------------------------------111
附錄9、ROCF----------------------------------------------112
附錄10、衝動與注意力行為問卷-------------------------------112
附錄11-1、個案基本資料與各評估結果原始資料表-----------------113
附錄11-2、MABC與普度手功能評估結果原始資料表----------------114
附錄11-3、按鍵行為與肌電生理原始資料表----------------------115
附錄11-4、動作準備期之動作準備波各電極平均振幅原始資料表
(MRCPs-BP)------------------------------------116
附錄11-5、動作準備期各電極間COH原始資料(α-band:右手)-------118
附錄11-6、動作準備期各電極間COH原始資料(β-band:右手)-------119
附錄11-7、動作準備期各電極間COH原始資料(α-band:同向)-------120
附錄11-8、動作準備期各電極間COH原始資料(β-band:同向)-------121
附錄11-9、動作準備期各電極間COH原始資料(α-band:反向)-------122
附錄11-10、動作準備期各電極間COH原始資料(β-band:反向)------123
附錄11-11、動作執行期之MCP與RAP各電極平均振幅原始資料表
(MRCPs:MCP & RAP-右手)-----------------------124

附錄11-12、動作執行期之MCP與RAP各電極平均振幅原始資料表
(MRCPs:MCP & RAP-同向)-----------------------125

附錄11-13、動作執行期之MCP與RAP各電極平均振幅原始資料表
(MRCPs:MCP & RAP-反向)----------------------126
附錄11-14、動作執行期各電極間COH原始資料(α-band:右手)-----127
附錄11-15、動作準備期各電極間COH原始資料(β-band:右手)-----128
附錄11-16、動作執行期各電極間COH原始資料(α-band:同手)-----129
附錄11-17、動作執行期各電極間COH原始資料(β-band:同向)-----130
附錄11-18、動作執行期各電極間COH原始資料(α-band:反向)-----131
附錄11-19、動作執行期各電極間COH原始資料(β-band:反向)-----132

附錄11-20、動作執行期之SPP各電極平均振幅原始資料表(MRCPs:
SPP)-----------------------------------------133

附錄11-21、動作執行期之SPP各電極平均振幅原始資料表(MRCPs:
SPP)-----------------------------------------134

附錄11-22、動作執行期各電極間COH原始資料(α-band:右手)-----135
附錄11-23、動作準備期各電極間COH原始資料(β-band:右手)-----136
附錄11-24、動作執行期各電極間COH原始資料(α-band:同手)-----137
附錄11-25、動作執行期各電極間COH原始資料(β-band:同向)-----138
附錄11-26、動作執行期各電極間COH原始資料(α-band:反向)-----139
附錄11-27、動作執行期各電極間COH原始資料(β-band:反向)-----140
附錄12、肌電生理變項的二因子變異數分析摘要表----------------141

附錄13、兩組樣本在動作準備期各電極動作準備波與頻帶聚合程度
描述性統計---------------------------------------142

附錄14、兩組樣本在動作執行期各電極動作準備波與頻帶聚合程度
描述性統計--------------------------------------145

附錄 15、兩組樣本在動作回饋期各電極動作準備波與頻帶聚合程度
描述性統計--------------------------------------149

附錄16、動作準備期腦電生理變項二因子變異數分析摘要表---------152
附錄17、動作執行期腦電生理變項二因子變異數分析摘要表----------153
附錄18、動作回饋期之腦波資料二因子變異數分析表---------------155
附錄19、兩組樣本在「反向按鍵」各電極之事件相關電位圖----------156
附錄20、兩組樣本在「同向按鍵」各電極之事件相關電位圖----------157



表目錄
表3-1-1、變項定義------------------------------------------30
表3-2-1、收案標準------------------------------------------31
表3-3-1、各刺激之設定值-------------------------------------46
表4-1-1、對照組vs. DCD組在人口學與控制變項描述性統計與檢定
結果----------------------------------------------57
表4-2-1、對照組vs. DCD組在各任務之按鍵行為與肌電生理描述性
統計----------------------------------------------61
表4-2-2、肌電生理變項二因子變異數分析摘要表-------------------63
表4-3-1、COH在任務間有顯著差異變項之簡易統整表----------------64
表4-4-1、MRCPs各成份波在組間達顯著差異變項統整表--------------68


圖目錄
圖2-3-1、MRCPs各歷程之成份波示意圖---------------------------23
圖3-1-1、研究架構------------------------------------------29
圖3-3-1、刺激種類------------------------------------------43
圖3-3-2、立體按鍵架----------------------------------------44
圖3-3-3、刺激呈現概圖---------------------------------------45
圖4-4-1、對照組vs. DCD組在反向按鍵Pz電極事件相關電位之MCP
與RAP平均振幅--------------------------------------69
圖4-4-2、對照組vs. DCD組在同向按鍵C3電極事件相關電位之RAP
平均振幅-------------------------------------------69
圖4-4-3、對照組vs. DCD組在同向按鍵C4電極事件相關電RAP
平均振幅------------------------------------------70
中文參考文獻

史麗珠(民94)。進階應用生物統計學:連續資料分析。台北市:學富文化。

邱皓政(民91)。量化研究與統計分析:SPSS中文視窗版資料分析範例解析(2版)。台北市:五南。

洪儷瑜、丘彥南、張郁雯、孟瑛如(民88)。注意力缺陷過動學生安置與輔導工作,第一年期中報告。台灣師範大學特殊教育系。

洪儷瑜、丘彥南、張郁雯、孟瑛如、蔡明富(民90)。問題行為篩選量表指導手冊。教育部特殊教育工作小組。

趙侖(民93)。ERP實驗教程。天津市:天津社會科學院。

鄭芳玉(民95)。ADHD孩童雙手同步協調與大腦半球間溝通特質之探討。長庚大學臨床行為科學所碩士論文,未出版,桃園縣。


西文參考文獻

Algra, M.D. (2001). Early Brain Damage and the Development of Motor Behavior in Children: Clues for Therapeutic Intervention? Neural Plasticity, 8, 31-49.

Ameratunga, D., Johnston, L.M., & Burns, Y.R. (2004) Goal directed upper limb movements in children with and without DCD: A window into perceptual-motor dysfunction. Physiotherapy Research International, 9(1), 1-12.

Andres, F.G., Mima, T., Schulman, A.E., Dichgans, J., Hallett, M., & Gerloff, C. (1999). Functional coupling of human cortical sensorimotor areas duringbimanual skill acquisition. Brain, 122, 855–870.

Aramaki, Y., Honda, M., Okada, T., & Sadato, N. (2006). Neural correlates of the spontaneous phase transition during bimanual coordination. Cerebral Cortex, 16, 1338-1348.

Arunachalam, R., Weerasinghe, V.S., & Mills, K.R. (2005). Motor control of rapid sequential finger tapping in humans. J Neurophysiol, 94, 2162-2170.

Babiloni, C., Brancucci, A., Vecchio, F., Arendt-Nielsen, L., Chene, A.C.N, Rossini, P.M. (2006). Anticipation of somatosensory and motor events increases centro-parietal functional coupling: An EEG coherence study. Clinical Neurophysiology,117, 1000–1008.

Barnhart, R., Davenport, M. J., Epps, S. B., & Nordquist, V.M. (2003). Developmental coordination disorder. Physical Therapy, 93(8), 722-731.

Bender, S., Resch, F., Weisbrod, M., & Oelkers-Ax, R. (2004). Specific task anticipation versus unspecific orienting reaction during early contingent negative variation. Clinical Neurophysiology, 115, 1836–1845.

Bockowski, L., Sobanies, W., Kulak, W., & Smigielska-Kuzia, J. (2005). The cortical evoked potentials in children with developmental coordination disorder. Annales Academiae Medicae Bialostocensis, 50, 87-90.

Brain Amp-MR. Operating instructions.(2002).Gernman:Brain Amp MR.

Burnod, Y., Baraduc, P., Batteglia-Mayer, A., Guigon, E., Koechlin, E., Ferraina, S., Lacquaniti, F., Camminiti, R.(1999). Parieto-frontal coding of reaching: an integrated framework. Exp Brain Res, 129, 325-46.

Byblow, W.D., Bysouth-Young, D., Summers, J., & Carson, R.G. (1998). Performance asymmetries and coupling dynamics in the acquisition of multifrequency bimanual coordination. Psychol Res, 61, 56-70.

Cantin, N., Polatajko, H.J., Thach, W.T., Jaglal, S. (2007). Developmental coordination disorder: Exploration of a cerebellar hypothesis. Human Movement Science, 26, 491–509.

Castro, A., Diaz, F., & Boxtel, G.J.M.(2007). How does a short history of spinal cord injury affect movement-related brain potentials? European Journal of Neuroscience, 25, 2927-2934.

Cheng, C.Y., Yen, M.Y., Lin, H.Y., Hsia, W.W., Hsu, W.M. (2004). "Association of ocular dominance and anisometropic myopia". Invest. Ophthalmol. Vis. Sci., 45 (8), 2856–60.

Chiarenza, G.A., Papakostopoulos, D., Giordana, F., & Guareschi-Cazzullo. (1983) A. Movement related brain macropotentials during skilled performance. A developmental study. Electroenceph. Clin. Neurophysiol., 56, 373-383.

Chiarenza, G.A.(1990). Motor-perceptual function in children with developmental reading disorders: neuropsychophysiological analysis. J of learning disabilities, 23(6), 375-385.

Chiarenza, G.A., Villa, M., Vasile, G. (1995). Developmental aspects of bereitschaftspotential in children during goal-directed behaviour. International Journal of Psychophysiology, 19, 149-176.

Coles, M.G.H., Gratton, G., & Fabiani, M. (1991). Event-related potentials. In: Tutorials in Psychophysiology: Physical, Social, and Inferential Elements. Cambridge: Cambridge University Press.

Coleman, R.; Piek, J.P.; Livesey, D.J.(2001). A longitudinal study of motor ability and kinaesthetic acuity in young children at risk of developmental coordination disorder. Human Movement Science,20(1), 95-110.

Crawford, S.G., & Dewey, D. (2008). Co-occurring disorders: A possible key to visual perceptual deficits in children with developmental coordination disorder? Human Movement Science, 27, 154–169.

Cui, R.Q., & Deecke, L. (1999). High resolution DC-EEG analysis of the bereitschaftspotential and

Dale, C.L., Gratton, G., & Gibbon, J.(2001). Event-related brain potentials isolate the motor component in a tapping task. Neurophysiology, Basic and Clinical, 112, 3015-3018.

de Castelnau, P., Albaret, J.M., Chaix, Y., Zanone, P.G. (2007). Developmental coordination disorder pertains to d deficit in perceptuao-motor synchronization independent of attention capacitied. Human Movement Science, 26, 477-490.

de Castelnau, P., Albaret, J.M., Chaix, Y., Zanone, P.G. (2008). A study of EEG coherence in DCD children during motor synchronization task. Human Movement Science, 27, 230-241.

de Jong, B.M., Leenders, K.L., Paans, A.M.(2002).Right parieto-premotor activation related to limb-independent antiphase movement. Cereb Cortex, 12, 1213-1217.

de Oliveira, S.C. (2002). The neuronal basis of bimanual coordination: recent neurophysiological evidence and functional models. Acta Psychological, 110, 139-159.

Deecke, L., Grozinger, B., & Kornhuber, H.H. (1976). Voluntary Finger Movement in Man: Cerebral Potentials and theory. Biol. Cybernetics, 23, 99-119.

Deecke L., Kornhuber HH.(1978). An electrical sign of participation of the mesial supplementary motor cortex in human voluntary finger movement. Brain Res, 159, 473-476.

Deiber, M.P., Ibanez, V., Caldara, R., Andrey, C., & Hauert, C.A. (2005). Programming effectors and coordination in bimanual in-phase mirror finger movements. Cognitive Brain Research, 23, 374-386.

Dewey, D., & Wilson, B. N. (2001). Developmental coordination disorder: What is it? Physical and Occupational Therapy in Paediatrics, 20, 5–27.

Dunford, C., Missiuna, C., Street, E., & Sibert J.(2005).Children’s Perceptions of the Impact of Developmental Coordination Disorder on Activities of Daily Living. British Journal of Occupational Therapy, 68(5), 207-214.

Estil, L.B., Ingvaldsen, R.P., & Whiting, H.T.A. (2002). Spatial and temporal constraints on performance in children with movement coordination problems. Exp Brain Res, 147, 153-161.

Fliers, E., Rommelse, N., Vermeulen, S.H.H.M., Altink, M., Buschgens, C.J.M., Faraone, S.V., Sergeant, J.A., Franke, B., & Buitelaar, J.K. (2008). Motor coordination problems in children and adolescents with ADHD rated by parents and teachers: effects of age and gender. J Neural Transm, 115, 211–220.

Florian, G., Andrew, C., & Pfurtscheller, G. (1998). Do change in coherence always reflect changes in functional coupling? Electroencephalography and Clinical Neurophysiology, 106, 87-91.

Gerloff, C., Richard, J., Hadley, J., Schulman, A.E., Honda, M., & Hallett, M. (1998). Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain, 121, 1513–1531.

Goerres, G.W., Samuel, M., Jenkins, I.H., & Brooks. D.J. (1998). Cerebral control of unimanual and bimanual movements: an PET study. Neuroreport, 9, 3631–3638.

Gratton, G., Coles, M.G.H., Sirevaag, E.J., Eriksen, C.W., Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14(3), 331-344.

Gronwall, D.M., Sampson, H. (1971). Ocular dominance: a test of two hypotheses. Br. J. Psychol, 62 (2), 175–185.

Grove, C.R., & Lazarus, J.A.C. (2007). Impaired re-weighting of sensory feedback formaintenance of postural control in children with developmental coordination disorder. Human Movement Science, 26, 457–476.

Handy, T.C. (2004). Event-related potentials: a methods handbook. Cambridge, Mass:MIT Press.

Harrington, D.L., Lee, R.R., Boyd, L.A., Rapcsak, S.Z., & Knight, R.T. (2004). Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain, 127, 561-574.

Heuer, H., Kleinsorge, T., Spijkers, W., & Steglich, C. (2001). Static and phasic cross-talk effects in discrete bimanual reversal movements. Journal of motor behavior, 33(1), 67-85.

Immisch, I., Waldvogel, D., VanGelderen, P., Hallett, M.(2001) The role of the medial wall and its anatomical variations for bimanual antiphase and in-phase movements. NeuroImage 14, 674–684.

Ivry, R. B. & Hazeltine, E. (1999). Subcortical locus of temporal coupling in the bimanual movements of a callosotomy patient. Human Movement Science, 18, 345-375.

Jentzsch, I., & Leuthold, H. (2002). Advance movement preparation of eye, foot, and hand: a comparative study using movement-related brain potentials. Cognitive Brain Research, 14, 201-217.

Jankelowitz, S.K., Colebatch, J.G. (2002). Movement-related potentials associated with self-paced, cued and imagined arm movements. Exp Brain Res, 147, 98-107.

Kalaska, J.F., Scott, S.H., Cisek, P., Sergio, L.E.(1997).Cortical control of reaching movement. Curr Opin Neurobiol, 7, 849-59.

Kelso, J. A. S. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology:Regulatory, Integrative and Comparative Physiology, 15, 1000-1004.

Kelso, J.A.S., Scholz, J.P., & Schoner, G.. (1988). Dynamics governs switching among patterns of coordination in biological movement. Physics Letters, 134, 8-12.

Kennerley, S.W., Diedrichsen, J., Hazeltine, E., Semjen, A., & Ivry, R.B. (2002). Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nat Neurosci, 5, 376–381.

Knyazeva, M., Koeda, T., Njiokiktjien, C, Jonkman, E.J., Kurganskaya, M., Sonneville, L., & Vildavsky, V. (1997). EEG coherence changes during finger tapping in acallosal and normal children: a study of inter- and intrahemispheric connectivity. Behavioural Brain Research , 89, 243–258.

Kopp, B., Kunkel, A., Muller, G., Muhlnickel, W., & Flor, H. (2000). Steady-state movement-related potentials evoked by fast repetitive movements. Brain Topography, 13(1), 21-28.

Kukleta, M., & Lamarche, M.(1998). The early component of the premovement readiness potential and its behavioral determinants. Cogn Brain Res, 6, 273–278

Legon, W., & Staines, W.R. (2006). Predictability of the target stimulus for sensory-guided movement modulates early somatosensory cortical potentials. Clinical Neurophysiology, 117, 1345-1353.

Loring, D. W., Lee. G. P., & Meador. K. J.(1988). Revising the Rey-Oaterrleth: Rating right hemisphere recall. Archives of Clinical Neuropsychoiopy, 3, 239-247.

Loseby, P.N., Piek, J.P., & Barrett, N.C. (2001). The influence of speed and force on bimanual finger tapping patterns. Human Movement Science, 20, 531-547.

Miles, M.R. (1930). Ocular dominance in human adults, J. Gen. Psychcol, 3, 412–430.

Mima, T., Matsuoka, T., Hallett, M. (2000). Functional coupling of human right and left cortical motor areas demonstrated with partial coherence analysis. Neuroscience Letters, 287, 93-96.

Missiuna, C., Pollock, N. & Law, M.(2000).The Perceived Efficacy and Goal Setting System﹝research edition﹞. McMaster University, ON:Author.

Mitra, S., Anazeen, P.G., & Turvey, M.T. (1998). Intermediate motor learning as decreasing active (dynamical) degrees of freedom. Human Movement Science, 17, 17-65.

Muttey, M., Stirling, H., & Spalding, N. (1978). Quick Neurological Screening Test, Revised Ed. Northumberland: Ann Arbour Publishers.

Mutti, M., Sterling, H.M., & Spalding, N.V. (1978). Quick Neurological Screening Test-Revised (QNSTR). San Antonio, TX: The Psychological Corp.

O’Hare, A., & Khalid, S. (2002).The Association of Abnormal Cerebellar Function in Children with Developmental Coordination Disorder and Reading Difficulties. DYSLEXIA, 8, 234–248

Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97-113.

Osterrieth, P. A. (1944). Le test de copie d’une figure complex. Archives de Psychologie, 30, 206-356.

Osterrieth, P. A. (1944). Le test de copie d’une figure complex. Archives de Psychologie, 30, 206-356.

Piek; J.P., Dyck, M.J., Francis, M., Conwell, A. (2007). Working memory, processing speed, and set-shifting in children with developmental coordination disorder and attention-deficit-hyperactivity disorder. Developmental Medicine and Child Neurology, 49, 9; 678-683.

Pitcher, T.M., Piek, J.P., & Barrett, N.C. (2002). Timing and force control in boys with attention deficit hyperactivity disorder: Subtype differences and the effect of comorbid developmental coordination disorder. Human Movement Science, 21, 919–945.

Pryde, K.M. & Roy, E.A. (1999). Mechanisms of Developmental Coordination Disorder: Individual Analyses and Disparate Findings. Brain and Cognition, 40(1), 230-234.

Rey, A. (1941). L’examen psychologique dans les cas d’encéphalopathie traumatique. Archives de Psychologie, 28(112), 286–340.

Rey. A. (l942). L’ekamen psychologique dans les cas d’rncephalopathie traumatique. Archives de Psychologie, 28, 286-340.

Ridderikhoff, A., Peper, C.L.E., & Beek P.J. (2005). Unraveling interlimb interactions underlying bimanul coordination. J Neurophysiol, 94, 3112-3125.

Rivkin, M.J., Vajapeyam, S., Hutton, C., Weiler, M.L., Hall, E.K., Wolraich, D.A., Yoo, S.S., Mulkern, R.V., Forbes, P.W., Wolff, P.H., & Waber, D.P. (2003). A functional magnetic resonance imaging study of paced finger tapping in children. Pediatr Neurol, 28, 89-95.

Rönnqvist, L., & von. Hofsten, C. (1994) Varieties and determinants of finger movements in neonates. Early Development & Parenting, 3, 81-94.

Sadato, N., Ibanez, V., & Ibanez, V.(1996). Complexity affects regional cerebral blood flow change during sequential finger movements. Journal of Neuroscience, 16, 2693-2700.

Sadato, N., Yonekura, Y., Waki, A., Yamada, H.,Ishii, Y.(1997).Role of the supplementary motor area and right premotor cortex in the coordination of bimanual finger movement. J Neurosci, 17, 9667-9674.

Salter, J.E., Wishart, L.R., Lee, T.D., Simon, D. (2004). Perceptual and motor contributions to bimanual coordination. Neuroscience Letters, 363, 102-107.

Sarah, A. (2007). Can children with developmental coordination disorder adapt to task constraints when catching two-handed?.Disability and Rehabilitation, 29, 57-67.

Schoemaker, M.M., van der Wees, M., Flapper, B., Verheij-Jansen, N., Scholten-Jaegers, S., & Geuze, R.H. (2001). Perceptual skills of children with developmental coordination disorder. Hum Mov Sci, 20, 111–133.

Schoemaker; M.M., Smits-Engelsman; B.C.M., Jongmans, M.J.(2003). Psychometric properties of the Movement Assessment Battery for Children-Checklist as a screening instrument for children with a developmental co-ordination disoreder. British Journal of Educational Psychology, 73, 425-441.

Scholz, J.P., Kelso, J.A., & Schoner, G. (1987). Nonequilibrium phase transitions in coordinated biological motion: Critical slowing down and switching time. Physics Letters, 123(8), 390-394.

Serrien, D.J. & Brown, P. (2002). The functional role of interhemispheric synchronization in the control of bimanual timing tasks. Exp Brain Res, 147, 268-272.

Shibasaki H, Barrett G, Halliday AM.(1982). Cortical potentials associated with voluntary foot movement in man. Electroenceph Clin Neurophysiol, 52, 507-523.

Shibasaki, H., & Hallett, M.(2006). What is the Bereitschaftspotential? Clinical Neurophysiology, 117(11), 2341-2356.

Smits-Engelsman, B.C.M., Niemeijer, A.S., & Van-Galen, G.P. (2001). Fine motor deficiencies in children diagnosed as DCD based on poor grapho-motor ability. Human Movement Science , 20, 161-182.

Steger, J., Imhof, K., Steinhausen, H.C., & Brandeis, D. (2000). Brain mapping of bilateral interactions in attention deficit hyperactivity disorder and control boys. Clinical Neurophysiology, 111, 1141-1156.

Stephan, K.M., Binkofski, F., Seitz, R.J., & Freund, H.J. (1999). Cerebral midline structures in bimanual coordination. Exp Brain Res, 128, 243-249.

Steyvers, M., Etoh, S., Sauner, D., Levin, O., Siebner, H.R., Swinnen, S.P., & Rothwell, J.C. (2003).High-frequency transcranial magnetic stimulation of the supplementary motor area reduces bimanual coupling during anti-phase but not in-phase movements. Exp Brain Res, 151, 309–317.

Stott, D.H., Moyes, F.A,. Henderson, S.E.(1984) The test of motor impairment: Henderson revision (movement ABC). San Antonio, TX: The Psychological Corporation.

Swinnen, S.P., & Wenderoth, N. (2004). Two hands, one brain: cognitive neuroscience of bimanual skill. TRENDS in Cognitive Sciences, 8(18), 19-25.

Szurhaj, W., Labyt, E., Bourriez, J.L., Kahane, P., Chauvel, P., Mauguiere, F., & Derambure, P. (2006). Relationship between intracerebral gamma oscillations and slow potential in the human sensorimotor cortex. European Journal of Neuroscience, 24, 947-954.

Tiffin, J.(1948). Purdue Pegboard Examiner Mnanual. Chicoga, IL: Science Research Associates, Inc., 1948.

Toyokura, M., Muro. I., & Komiya, T.(1999).Relation of bimanual coordination to activation in the seneorimotor cortex and supplementary motor area: analysis using functional magnetic resonance imaging. Brain Research Bulletin, 48, 211-217.

Ullen´, N K., Forssberg, H., & Ehrsson, H.H. (2003). Neural networks for the coordination of the hands in time. J Neurophysiol , 89, 1126–1135.

Valle-Inclán, F., Blanco, M.J., Soto, D., & Leirós L. (2008). A new method to assess eye dominance. Psicológica, 29, 55-64.

Volman, M.J.M., & Geuze, R.H. (1998). Stability of rhythmic finger movements in children with a Developmental Coordination Disorder. Motor Control, 2, 34-60.

Volman, M.J.M., Laroy, M.E., & Jongmans, M.J. (2006). Rhythmic coordination of hand and foot in children with developmental coordination disorder. Child: Care, health and development, 32, 693-702.

Waelvelde, H.V., Weer, W.D, Cock, P.D., Janssens, L., Feys, H., & Bouwien, C.M. (2006). Parameterization of movement execution in children with developmentalcoordination disorder. Brain and Cognition, 60, 20-31.

Waelvelde, H.V., Weer, W.D, Cock, P.D., Janssens, L., Feys, H., & Bouwien, C.M. (2004). Association between visual perceptual deficits and motor deficits in children with developmental coordination disorder. Developmental Medicine & Child Neurology, 46, 661–666.

Waterson T. (1999).Managing the clumsy and non-reading child. Practitioner; 243, 675–677.

Wenderoth, N., Debaere, F., Sunaert, S., van Hecke, P., & Swinnen, S.P. (2004). Parietal–premotor areas mediate directional interference during bimanual movements. Cerebral Cortex Advance Access, 14(10), 1153-1163.

Williams, H.G., Woollacott, M.H., & Ivry R. (1992). Timing and motor control in clumsy children. Journal of Motor Behavior, 24, 165-172.

Williams, M.A., Mackie, R.T., McCulloc, D.L., & Pascal E. (1996).Visual evoked potential in children with developmental coordination disorder. Ophthalmic Physiol Opt., 16(2), 178-83.

Wilosn, P.H., & Larkin, D. (2008). New and emerging approaches to understanding developmental coordination disorder. Human Movement Science, 27, 171-176.

Wilson, P.H., Maruff, P., & Lum, J. (2003). Procedural learning in children with developmental coordination disorder. Human Movement Science, 22, 515-526.

Yamanishi, J., Kawato, M., & Suzuki, R. (1980). Two coupled oscillators as a model for the coordinated finger tapping by both hands. Biological Cybernetics, 37, 219-225.

Yu, W.H.(2004).The use of the Dynamic Occupational Therapy Cognitive Assessment for Children(DOTCA-CH) in Taiwan: a pilot study. Unpublished doctoral dissertation, Boston University, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top