跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范嘉倫
研究生(外文):Chia Lun Fan
論文名稱:活體中耳幾何外型重建及表面平滑處理技術之探討
論文名稱(外文):Geometrical scaling and reconstruction of in-vivo human middle ear
指導教授:余仁方
指導教授(外文):J. F. YU
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫療機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:101
中文關鍵詞:中耳人耳鼓膜人耳聽小骨曲率表面平滑處理電腦斷層掃描核磁共振造影
外文關鍵詞:Middle earHuman tympanic membraneHuman ossiclesCurvatureSurface smoothingHigh-resolution computed tomographyMagnetic resonance imaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中耳腔是充滿了空氣的空間,在這個空間中有三塊聽小骨:槌骨(malleus)、砧骨(incus)及鐙骨(stapes),由外而內連接了鼓膜及內耳,負責將外界的聲波傳導及放大進入內耳,再由內耳轉變為電生理訊號,使人類聽到聲音。在臨床上,聽小骨先天畸形或斷裂、慢性中耳炎及膽脂瘤等疾病,皆會使聽小骨受到影響,造成傳導性的聽力障礙,有學者使用有限元素法分析上述疾病對聽小骨運動之影響程度,其中聽小骨係以人體組織學圖片或電腦斷層掃描影像重組成三維模型,但目前對於活體人耳聽小骨三維模型上的奇異點之影響尚未有明確地探討,故本研究將利用影像處理方法進行聽小骨幾何外型與表面平滑處理技術之最佳化分析,及聽小骨幾何外型長度之測量。

目前對慢性中耳炎病患進行鼓室成型術時,鼓膜的幾何外型變化量完全取決於醫師的訓練、經驗及手術技巧,如此將會導致鼓膜原有幾何外型之改變。目前並無針對活體人耳鼓膜實際曲率進行探討,故本研究將以非侵入性的方式進行測量鼓膜之幾何外型及二維曲率。
The middle ear cavity is a space full of air. There are three ossicles in this space: the malleus, the incus and the stapes. The ossicles connect the tympanic membrane and the inner ear. The sound wave would be enlarged and conducted into inner ear by the ossicles, and then the sound wave would be transformed into auditory evoked potential by inner ear for human to hear sounds. Clinically, the ossicles would be affected and would result in conductive hearing loss due to the ossicular congenital anomalies or fracture, chronic suppurative otitis media and cholesteatoma. To understand the influence of the middle ear diseases on the ossicular vibration, the finite element analysis was utilized in previous study. The 3D model of ossicles was reconstructed by cadaver histology section or computed tomography scan. However, the influence of singular point upon the 3D model of in-vivo human ossicles was lack of discussion. Therefore, this study would discuss the optimization analysis for the geometry of ossicles and smoothing method, and then the lengths of the geometry of ossicles would be measured.

Antibiotics were mostly used to cure CSOM. As otorrhea became serious complication, tympanoplasty was mostly performed to control the infection. Contraindications to tympanoplasty would vary from one surgeon to another depending upon his training, philosophy, experience, and surgical skill. The geometry of tympanic membrane would be changed due to tympanoplasty. Nevertheless, the discussion of the curvature of in-vivo human tympanic membrane was still short of. Hence, this study would non-invasively measure the geometry and the 2D curvature of in-vivo human tympanic membrane.
目 錄
誌 謝 i
中文摘要 ii
英文摘要 iii
目 錄 v
圖目錄 vii
表目錄 x
第一章 簡介 1
1.1 研究背景 1
1.1.1 中耳的構造及功能 1
1.1.2 鼓膜的構造 2
1.2 中耳腔疾病 3
1.2.1 鼓膜外傷 3
1.2.2 急性中耳炎 3
1.2.3 慢性化膿性中耳炎 4
1.3 鼓室成型術 6
1.4 研究動機及目的 7
第二章 運用核磁共振造影進行活體人耳鼓膜之成像 13
2.1 緣由與目的 13
2.2 材料與方法 14
2.3 結果與討論 15
2.4 結論 17
第三章 活體人耳鼓膜三維曲率之測量 22
3.1 緣由與目的 22
3.2 材料與方法 23
3.3 結果與討論 25
3.4 結論 26
第四章 活體人耳聽小骨表面平滑處理技術之探討 35
4.1 緣由與目的 35
4.2 材料與方法 36
4.3 結果與討論 37
4.4 結論 40
第五章 活體人耳聽小骨幾何外型之測量 52
5.1 緣由與目的 52
5.2 材料與方法 53
5.3 結果與討論 55
5.4 結論 58
第六章 結論 73


圖目錄
圖1.1 人耳的構造 9
圖1.2 聲音由氣體進入液體的介面 10
圖1.3 鼓膜的構造 11
圖1.4 鼓膜各型穿孔 12
圖2.1 9-公分表面線圈 18
圖2.2 鼓膜之CT影像(箭頭處) 19
圖2.3 MSSE sequence之鼓膜MRI影像(箭頭處) 20
圖2.4 3D SNAP sequence之鼓膜MRI影像(箭頭處) 21
圖3.1 人耳顳骨之CT影像 28
圖3.2 大體人耳鼓膜之影像(箭頭處) 29
圖3.3 鼓膜之CT影像(箭頭處) 30
圖3.4 圈選鼓膜CT影像之輪廓(箭頭處) 31
圖3.5 鼓膜幾何外型之測量(b=3.77 mm, c= 5.04 mm, A=108°) 32
圖3.6 inferior to superior planes間各鼓膜切面之曲率變化(slice1 to 11) 34
圖4.1 聽小骨histogram型式之CT影像 42
圖4.2 槌骨(a)、砧骨(b)及(c)鐙骨linear型式之CT影像(箭頭處) 43
圖4.3 圈選聽小骨之CT影像(箭頭處) 44
圖4.4 聽小骨之三維模型 45
圖4.5 以constrained smoothing表面平滑處理後之聽小骨三維模型 47
圖4.6 以unconstrained smoothing表面平滑處理後之聽小骨三維模型 48
圖4.7 Smooth Surface各參數(iterations & lambda)之體積變化量 49
圖4.8 以Smooth Surface表面平滑處理後之聽小骨三維模型(iterations=20;lambda=0.6) 51
圖5.1 大體人耳槌骨(a)及(b)砧骨之影像 60
圖5.2 大體人耳槌骨(a)及(b)砧骨之Micro CT影像 61
圖5.3 圈選大體人耳槌骨(a)及(b)砧骨之Micro CT影像 62
圖5.4 大體人耳槌骨(a)及(b)砧骨之三維模型 63
圖5.5 聽小骨histogram型式之CT影像 64
圖5.6 槌骨(a)、砧骨(b)及(c)鐙骨linear型式之CT影像(箭頭處) 65
圖5.7 圈選聽小骨之CT影像(箭頭處) 66
圖5.8 以Smooth Surface表面平滑處理後之聽小骨三維模型(iterations=20;lambda=0.6) 67
圖5.9 聽小骨三維模型各部位長度之編號 68
圖5.10 大體槌骨三維模型以unconstrained smoothing表面平滑處理後之幾何外型測量(unit:mm) 69
圖5.11 大體砧骨三維模型以unconstrained smoothing表面平滑處理後之幾何外型測量(unit:mm) 70


表目錄
表3.1 鼓膜之曲率半徑 33
表4.1 10個聽小骨以constrained smoothing及unconstrained smoothing表面平滑處理後之體積差異 46
表4.2 10個聽小骨以Smooth Surface表面平滑處理後的iterations參數之平均值(lambda=0.6)及其體積之差異 50
表5.1 10個槌骨以Smooth Surface表面平滑處理後之幾何外型測量(unit:mm) 71
表5.2 10個砧骨以Smooth Surface表面平滑處理後之幾何外型測量(unit:mm) 72
1. Lee CF, Chen JH, Chou YF, Hsu LP, Chen PR, Liu TC. Optimal graft thickness for different sizes of tympanic membrane perforation in cartilage myringoplasty: a finite element analysis. Laryngoscope 2007;117:725-730.
2. Lee CF, Hsu LP, Chen PR, Chou YF, Chen JH, Liu TC. Biomechanical modeling and design optimization of cartilage myringoplasty using finite element analysis. Audiol Neurootol 2006;11:380-388.
3. Bigelow DC, Kay D, Saunders JC. Effect of healed tympanic membrane perforations on umbo velocity in the rat. Ann Otol Rhinol Laryngol 1998;107:928-934.
4. Attallah MS, al-Essa A. Hearing results in tympanoplasty in Riyadh. Otolaryngol Pol 1996;50:145-151.
5. Hamilton J. Current trends in managing chronic middle ear disease. Hosp Med 2001;62:673-677.
6. Merchant SN, Ravicz ME, Puria Set al. Analysis of middle ear mechanics and application to diseased and reconstructed ears. Am J Otol 1997;18:139-154.
7. Pfaltz CR, Pfaltz R, Schmid P. Reconstructive surgery in chronic otitis media. Statistical analysis of long-term results. ORL J Otorhinolaryngol Relat Spec 1975;37:257-270.
8. Bigelow DC, Swanson PB, Saunders JC. The effect of tympanic membrane perforation size on umbo velocity in the rat. Laryngoscope 1996;106:71-76.
9. Voss SE, Rosowski JJ, Merchant SN, Peake WT. How do tympanic-membrane perforations affect human middle-ear sound transmission? Acta Otolaryngol 2001;121:169-173.
10. Voss SE, Rosowski JJ, Merchant SN, Peake WT. Middle-ear function with tympanic-membrane perforations. II. A simple model. J Acoust Soc Am 2001;110:1445-1452.
11. Voss SE, Rosowski JJ, Merchant SN, Peake WT. Middle-ear function with tympanic-membrane perforations. I. Measurements and mechanisms. J Acoust Soc Am 2001;110:1432-1444.
12. Gan RZ, Sun Q, Feng B, Wood MW. Acoustic-structural coupled finite element analysis for sound transmission in human ear--pressure distributions. Med Eng Phys 2006;28:395-404.
13. Perez Obon J, Fernandez Liesa R, Marin Garcia J, Valero J, Eiras Ajuria J, Ortiz Garcia A. [Congenital cholesteatoma of the petrous process and mastoid: a report of two cases]. Acta Otorrinolaringol Esp 1995;46:349-352.
14. Virapongse C, Rothman SL, Kier EL, Sarwar M. Computed tomographic anatomy of the temporal bone. AJR Am J Roentgenol 1982;139:739-749.
15. Virapongse C, Rothman SL, Sasaki C, Kier EL. The role of high resolution computed tomography in evaluating disease of the middle ear. J Comput Assist Tomogr 1982;6:711-720.
16. Lloyd GA, du Boulay GH, Phelps PD, Pullicino P. The demonstration of the auditory ossicles by high resolution CT. Neuroradiology 1979;18:243-248.
17. Virapongse C, Sarwar M, Kier EL, Sasaki C, Pillsbury H. Temporal bone disease: a comparison between high resolution computed tomography and pluridirectional tomography. Radiology 1983;147:743-748.
18. Weissman JL. Hearing loss. Radiology 1996;199:593-611.
19. Falcioni M, Caruso A, Sanna M. [Coexistence of vestibular schwannoma and glomus tympanicum tumor]. Acta Otorhinolaryngol Ital 1998;18:398-401.
20. Davison SP, Facer GW, McGough PF, McCaffrey TV, Reder PA. Use of magnetic resonance imaging and magnetic resonance angiography in diagnosis of sigmoid sinus thrombosis. Ear Nose Throat J 1997;76:436-441.
21. Heran F, Williams M. [MRI of the ear]. J Neuroradiol 2003;30:131-145.
22. Kneissl S, Probst A, Konar M. Low-field magnetic resonance imaging of the canine middle and inner ear. Vet Radiol Ultrasound 2004;45:520-522.
23. Dornhoffer JL, Gardner E. Prognostic factors in ossiculoplasty: a statistical staging system. Otol Neurotol 2001;22:299-304.
24. Glasscock ME, 3rd. Symposium: contraindications to tympanoplasty. II. An exercise in clinical judgment. Laryngoscope 1976;86:70-76.
25. Guelke R, Keen JA. A study of the vibrations of the tympanic membrane under direct vision, with a new explanation of their physical characteristics. J Physiol 1949;110:226-236.
26. Funnell WR. Low-frequency coupling between eardrum and manubrium in a finite-element model. J Acoust Soc Am 1996;99:3036-3043.
27. Funnell WR. On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum. J Acoust Soc Am 1983;73:1657-1661.
28. Funnell WR, Laszlo CA. A critical review of experimental observations on ear-drum structure and function. ORL J Otorhinolaryngol Relat Spec 1982;44:181-205.
29. Funnell WR, Laszlo CA. Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 1978;63:1461-1467.
30. Decraemer WF, Dirckx JJ, Funnell WR. Shape and derived geometrical parameters of the adult, human tympanic membrane measured with a phase-shift moire interferometer. Hear Res 1991;51:107-121.
31. Gan RZ, Feng B, Sun Q. Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 2004;32:847-859.
32. Koike T, Wada H, Kobayashi T. Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 2002;111:1306-1317.
33. Lee CF, Chen PR, Lee WJ, Chen JH, Liu TC. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis. Laryngoscope 2006;116:711-716.
34. Sun Q, Gan RZ, Chang KH, Dormer KJ. Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol 2002;1:109-122.
35. Decraemer WF, Dirckx JJ, Funnell WR. Three-dimensional modelling of the middle-ear ossicular chain using a commercial high-resolution X-ray CT scanner. J Assoc Res Otolaryngol 2003;4:250-263.
36. Nomura, Y., Hiraide, F. and Harada, T., New Atlas of Otology, Springer-Verlag, Tokyo, 1992.
37. William A. Yost, Fundamentals of hearing, Academic Press, fourth edition, 2000.
38. Gerard J. Tortora, Sandra R. Grabowski, Principles of Anatomy and Physiology, 11th edition, Wiley.
39. 徐茂銘,《耳鼻喉科備戰手冊》,初版,台北,橘井文化,民國九十四年。
40. Rogan J. Corbridge,William P.L. Hellier著,《耳鼻喉開業指南》,張斌譯,台北,合記書局,民國九十四年。
41. 張斌,《耳鼻喉科學》,初版,台北,正中書局,民國八十五年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top