跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林育駿
研究生(外文):Yu-Chun Lin
論文名稱:非等向性磁振擴散造影分析及其於感覺神經性耳聾之應用
論文名稱(外文):Diffusion Anisotropy Analysis using MRI and Its Applications in Sensorineural Hearing Loss
指導教授:王俊杰王俊杰引用關係
指導教授(外文):J. J. Wang
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學物理暨影像科學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:75
中文關鍵詞:非等向性磁振擴散造影感覺神經性耳聾磁振造影
外文關鍵詞:Diffusion Tensor ImagingSensorineural Hearing LossMRI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
磁振擴散造影可測量體內水分子擴散現象,而近年來隨著磁振擴散張量造影的發展,大腦神經白質結構及連結得以非侵入性影像的方式具體研究,從磁振擴散張量資料取得的特徵值可用來計算出許多非等向性的指標,進而應用在許多神經纖維結構的量化。目前這些非等向性指標只提供非等向性大小,對於水分子擴散的方向,缺乏有效定量的方法。
本論文首先我們提出了一個新的指標「體素間擴散協調性 (IVDC)」,使用特徵向量計算出空間中每一個體素與其周圍相鄰近的體素在擴散方向的協調性,並可對此指標重建出全腦的圖像。我們顯示了此指標比傳統的非等向性指標對於偵測鄰近間神經纖維的分開更為靈敏,並且它可以提供更多在腦部水分子擴散的資訊。
在臨床應用上,我們針對感覺神經性聽損的病人做了磁振擴散張量造影,比較軸向擴散、側向擴散、平均擴散、非等向性擴散和體素間擴散協調性與正常人的差別,實驗結果發現聽損病人在外側丘系核和下丘兩個位置的非等向性擴散有顯著的減小,其主要原因是由於側向擴散的升高所導致。這些發現將有助於我們更加瞭解聽損病人在神經結構上潛在的損傷。
Diffusion tensor imaging (DTI) is a recent technique that has emerged a sensitive, noninvasive tool for assessing white matter abnormalities in the central nervous system. Several diffusion anisotropy indices have been calculated from the eigenvalues of DTI data. However, current diffusion indices do not provide information on microstructure orientations.
In this thesis, we proposed a novel method for spatially mapping the coherence of eigenvectors within a voxel neighborhood, the InterVoxel Diffusion Coherence (IVDC). We demonstrated that the IVDC index was more sensitive than fractional anisotropy to changes in separation between the fibers and it provides reliable and complementary information on water diffusion in the brain.
For the clinical application, we compared DTI measures of axial diffusivity, radial diffusivity, mean diffusivity, fractional anisotropy and our IVDC along the auditory pathway of patients with sensorineural hearing loss (SNHL) and normal controls. The results showed a high radial diffusivity that consequently led to a decreased fractional anisotropy in the lateral lemniscus and inferior colliculus in SNHL patients. These findings may help improve our understanding of the neuroanatomic basis underlying the deficits in hearing among SNHL patients.
Acknowledgement .....vi
Abstract ...........vii
Publications .......ix
List of Figures.....xii
List of Tables .....xiv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.2 Outline 3
Chapter 2 Principles of Diffusion Tensor Imaging 5
2.1 Diffusion MRI 5
2.2 Diffusion tensor 8
2.3 Quantitative diffusion indices extracted by eigenvalues 9
2.4 Visualization of fiber orientation using color encoded FA maps 11
Chapter 3 InterVoxel Diffusion Coherence (IVDC) based on eigenvectors 13
3.1 Introduction 13
3.2 Methods and Materials 15
3.2.1 Theory 15
3.2.2 Simulation studies 18
3.2.3 DTI measurements in human brain 19
3.2.4 Data analysis 20
3.3 Results 20
3.4 Discussion 27
3.4.1 Simulation studies 27
3.4.2 Reconstruction of maps in human volunteers 28
Chapter 4 DTI in patients with Sensorineural Hearing Loss 32
4.1 Introduction 32
4.1.1 Sensorineural hearing pathway in humans 32
4.1.2 Sensorineural hearing loss 34
4.1.3 Purpose of the study 34
4.2 Methods and Materials 35
4.2.1 Subjects 35
4.2.2 MR imaging protocols 36
4.2.3 Data Analysis 37
4.2.4 ROI Statistics 37
4.3 Results 39
4.3.1 Bilateral Profound Hearing Loss 39
4.3.2 Unilateral Profound Hearing Loss 40
4.3.3 Non-profound Hearing Loss 44
4.4 Discussion 47
Chapter 5 Conclusions 51
5.1 Discussions 51
5.1.1 Comparison of the diffusion anisotropy indices 51
5.1.2 Feasibility of IVDC in patients with SNHL 52
5.2 Conclusion 52
5.3 Future works 53
References 55



List of Figures

FIG. 2.1 Schematic illustration of the diffusion-weighted imaging sequence 6
FIG. 2.2 (a) FA map without directional information. (b) Combined FA and directional map 12
FIG. 3.1 Diffusion anisotropy indices at fiber crossover locations, plotted against the separation angle. 21
FIG. 3.2 Images of the calculated indices at the basal ganglia from a healthy subject. 23
FIG. 3.3 FA and IVDC maps of the thalamus in a healthy volunteer. 24
FIG. 3.4 FA and IVDC maps at the level of the middle
cerebellar peduncles and pons. 25
FIG. 3.5 IVDC maps derived from a different volunteer using different ROI sizes. 26
FIG. 4.1 Diagram of auditory pathway. 33
FIG. 4.2 ROIs drawing in a patient with unilateral profound
hearing loss. 38
FIG. 4.3 Avarage DTI measures at the lateral lemniscus 39
FIG. 4.4 Avarage DTI measures in patients with unilateral profound hearing loss (UPHL) 41



FIG. 4.5 Scatter plots of IVDC (a), FA (b) and diffusivities (c) at lateral lemniscus against the measured hearing levels in patients of NPHL group. 45
FIG. 4.6 Scatter plots of IVDC (a), FA (b) and diffusivities (c) at inferior colliculus against the measured hearing levels in patients of NPHL group. 46
1. Stejskal, E. & Tanner, J. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42, 288-292 (1965).
2. Paulson, O. B., Hertz, M. M., Bolwig, T. G. & Lassen, N. A. Filtration and diffusion of water across the blood-brain barrier in man. Microvasc Res 13, 113-24 (1977).
3. Taylor, D. G. & Bushell, M. C. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol 30, 345-9 (1985).
4. Kumon, Y. et al. Diagnostic use of isotropic diffusion-weighted MRI in patients with ischaemic stroke: detection of the lesion responsible for the clinical deficit. Neuroradiology 41, 777-84 (1999).
5. Linfante, I., Llinas, R. H., Caplan, L. R. & Warach, S. MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke 30, 2263-7 (1999).
6. Shah, A. K. & Whitty, J. E. Brain MRI in peripartum seizures: usefulness of combined T2 and diffusion weighted MR imaging. J Neurol Sci 166, 122-5 (1999).


7. Chenevert, T. L., Brunberg, J. A. & Pipe, J. G. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177, 401-5 (1990).
8. Moseley, M. E. et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176, 439-45 (1990).
9. Turner, R. et al. Echo-planar imaging of intravoxel incoherent motion. Radiology 177, 407-14 (1990).
10. Moonen, C. T. et al. Restricted and anisotropic displacement of water in healthy cat brain and in stroke studied by NMR diffusion imaging. Magn Reson Med 19, 327-32 (1991).
11. Le Bihan, D., Turner, R., Douek, P. & Patronas, N. Diffusion MR imaging: clinical applications. AJR Am J Roentgenol 159, 591-9 (1992).
12. Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys J 66, 259-67 (1994).
13. Basser, P. J., Mattiello, J. & LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103, 247-54 (1994).
14. Neil, J., Miller, J., Mukherjee, P. & Huppi, P. S. Diffusion tensor imaging of normal and injured developing human brain - a technical review. NMR Biomed 15, 543-52 (2002).

15. Arfanakis, K. et al. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23, 794-802 (2002).
16. Pfefferbaum, A. et al. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med 44, 259-68 (2000).
17. van Pul, C. et al. Selecting the best index for following the temporal evolution of apparent diffusion coefficient and diffusion anisotropy after hypoxic-ischemic white matter injury in neonates. AJNR Am J Neuroradiol 26, 469-81 (2005).
18. Papadakis, N. G. et al. A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn Reson Imaging 17, 881-92 (1999).
19. Wang, J. J., Chao, T. C., Wai, Y. Y. & Hsu, Y. Novel diffusion anisotropy indices: an evaluation. J Magn Reson Imaging 24, 211-7 (2006).
20. Pierpaoli, C. & Basser, P. J. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36, 893-906 (1996).
21. Mabbott, D. J., Noseworthy, M., Bouffet, E., Laughlin, S. & Rockel, C. White matter growth as a mechanism of cognitive development in children. Neuroimage 33, 936-46 (2006).
22. Kim, J. et al. Diffusion-tensor magnetic resonance imaging in children with language impairment. Neuroreport 17, 1279-82 (2006).

23. Pfefferbaum, A., Rosenbloom, M. J., Adalsteinsson, E. & Sullivan, E. V. Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism comorbidity: synergistic white matter damage. Brain 130, 48-64 (2007).
24. Ota, M. et al. Age-related degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage 31, 1445-52 (2006).
25. Vangberg, T. R. et al. Changes in white matter diffusion anisotropy in adolescents born prematurely. Neuroimage 32, 1538-48 (2006).
26. Madden, D. J. et al. Adult age differences in the functional neuroanatomy of visual attention: a combined fMRI and DTI study. Neurobiol Aging 28, 459-76 (2007).
27. Song, S. K. et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17, 1429-36 (2002).
28. Wang, J. J. et al. Visualization of the coherence of the principal diffusion orientation: an eigenvector-based approach. Magn Reson Med.
29. Le Bihan, D. Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 7, 1-30 (1991).
30. Basser, P. J. & Pajevic, S. Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn Reson Med 44, 41-50 (2000).

31. Xue, R., van Zijl, P. C., Crain, B. J., Solaiyappan, M. & Mori, S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 42, 1123-7 (1999).
32. Ulug, A. M. & van Zijl, P. C. Orientation-independent diffusion imaging without tensor diagonalization: anisotropy definitions based on physical attributes of the diffusion ellipsoid. J Magn Reson Imaging 9, 804-13 (1999).
33. Basser, P. J. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8, 333-44 (1995).
34. Kingsley, P. B. & Monahan, W. G. Contrast-to-noise ratios of diffusion anisotropy indices. Magn Reson Med 53, 911-8 (2005).
35. Pajevic, S. & Pierpaoli, C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42, 526-40 (1999).
36. Klingberg, T., Vaidya, C. J., Gabrieli, J. D., Moseley, M. E. & Hedehus, M. Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport 10, 2817-21 (1999).
37. Wu, Y. C., Field, A. S., Chung, M. K., Badie, B. & Alexander, A. L. Quantitative analysis of diffusion tensor orientation: theoretical framework. Magn Reson Med 52, 1146-55 (2004).

38. Tournier, J. D., Calamante, F., Gadian, D. G. & Connelly, A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23, 1176-85 (2004).
39. Jones, D. K., Horsfield, M. A. & Simmons, A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42, 515-25 (1999).
40. Jiang, H., van Zijl, P. C., Kim, J., Pearlson, G. D. & Mori, S. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 81, 106-16 (2006).
41. Swartz, J. D. Sensorineural hearing deficit: a systematic approach based on imaging findings. Radiographics 16, 561-74 (1996).
42. Davidson, H. C. Imaging evaluation of sensorineural hearing loss. Semin Ultrasound CT MR 22, 229-49 (2001).
43. Daniels, R. L. et al. Causes of unilateral sensorineural hearing loss screened by high-resolution fast spin echo magnetic resonance imaging: review of 1,070 consecutive cases. Am J Otol 21, 173-80 (2000).
44. Glastonbury, C. M. et al. Imaging findings of cochlear nerve deficiency. AJNR Am J Neuroradiol 23, 635-43 (2002).
45. Chang, Y. et al. Auditory neural pathway evaluation on sensorineural hearing loss using diffusion tensor imaging. Neuroreport 15, 1699-703 (2004).

46. Sullivan, E. V. et al. Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport 12, 99-104 (2001).
47. Eberhardt, K. E., Hollenbach, H. P., Deimling, M., Tomandl, B. F. & Huk, W. J. MR cisternography: a new method for the diagnosis of CSF fistulae. Eur Radiol 7, 1485-91 (1997).
48. Kocaoglu, M. et al. Comparison of contrast-enhanced T1-weighted and 3D constructive interference in steady state images for predicting outcome after hearing-preservation surgery for vestibular schwannoma. Neuroradiology 45, 476-81 (2003).
49. Toh, C. H. et al. Peritumoral edema of meningiomas and metastatic brain tumors: differences in diffusion characteristics evaluated with diffusion-tensor MR imaging. Neuroradiology 49, 489-94 (2007).
50. Thomalla, G. et al. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 22, 1767-74 (2004).
51. D'Arceuil, H. & de Crespigny, A. The effects of brain tissue decomposition on diffusion tensor imaging and tractography. Neuroimage 36, 64-8 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top