|
[1] P. A. Bandettini, E. C. Wong, R. S. Hinks et al., “Time course EPI of human brain function during task activation,” Magn Reson Med 25, 390-397 (1992). [2] K. K. Kwong, J. W. Belliveau, D. A. Chesler et al., “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc Natl Acad Sci U S A 89, 5675-5679 (1992). [3] S. Ogawa, D. W. Tank, R. Menon et al., “Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging,” Proc Natl Acad Sci U S A 89, 5951-5955 (1992). [4] B. E. Hoppel, R. M. Weisskoff, K. R. Thulborn et al., “Measurement of regional blood oxygenation and cerebral hemodynamics,” Magn Reson Med 30, 715-723 (1993). [5] J. W. Belliveau, D. N. Kennedy, Jr., R. C. McKinstry et al., “Functional mapping of the human visual cortex by magnetic resonance imaging,” Science 254, 716-719 (1991). [6] X. Hu, E. Yacoub, T. H. Le et al., in Functional MRI, edited by C. T. W. Moonen and P. A. Bandettini (Springer-Verlag, Mauer, 1999), pp. 243-252. [7] H. Lu, X. Golay, and P. C. van Zijl, “Intervoxel heterogeneity of event-related functional magnetic resonance imaging responses as a function of T(1) weighting,” Neuroimage 17, 943-955 (2002). [8] J. H. Duyn, C. T. Moonen, G. H. van Yperen et al., “Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5 T,” NMR Biomed 7, 83-88 (1994). [9] J. Frahm, K. D. Merboldt, W. Hanicke et al., “Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation,” NMR Biomed 7, 45-53 (1994). [10] J. H. Gao, I. Miller, S. Lai et al., “Quantitative assessment of blood inflow effects in functional MRI signals,” Magn Reson Med 36, 314-319 (1996). [11] G. H. Glover, S. K. Lemieux, M. Drangova et al., “Decomposition of inflow and blood oxygen level-dependent (BOLD) effects with dual-echo spiral gradient-recalled echo (GRE) fMRI,” Magn Reson Med 35, 299-308 (1996). [12] A. M. Howseman, S. Grootoonk, D. A. Porter et al., “The effect of slice order and thickness on fMRI activation data using multislice echo-planar imaging,” Neuroimage 9, 363-376 (1999). [13] Y. Mazaheri, B. B. Biswal, B. D. Ward et al., “Measurements of tissue T1 spin-lattice relaxation time and discrimination of large draining veins using transient EPI data sets in BOLD-weighted fMRI acquisitions,” Neuroimage 32, 603-615 (2006). [14] C. W. Wu, J. H. Chen, and H. L. Liu, “Dependencd of inflow effect in BOLD fMRI signal on magnetic field strength,” in Proceedings of the ISMRM 13th Annual Meeting, (Miami, Florida, USA, 2005), pp.1042 [15] F. Kruggel and D. Y. von Cramon, “Temporal properties of the hemodynamic response in functional MRI,” Hum Brain Mapp 8, 259-271 (1999). [16] P. A. Bandettini, in Functional MRI, edited by C. T. W. Moonen and P. A. Bandettini (Springer-Verlag, Mauer, 1999), pp. 205-220. [17] R. L. Buckner, P. A. Bandettini, K. M. O'Craven et al., “Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging,” Proc Natl Acad Sci U S A 93, 14878-14883 (1996). [18] R. L. Buckner, W. Koutstaal, D. L. Schacter et al., “Functional-anatomic study of episodic retrieval. II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis,” Neuroimage 7, 163-175 (1998). [19] S. G. Kim, W. Richter, and K. Ugurbil, “Limitations of temporal resolution in functional MRI,” Magn Reson Med 37, 631-636 (1997). [20] A. T. Lee, G. H. Glover, and C. H. Meyer, “Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging,” Magn Reson Med 33, 745-754 (1995). [21] M. D. Robson, J. L. Dorosz, and J. C. Gore, “Measurements of the temporal fMRI response of the human auditory cortex to trains of tones,” Neuroimage 7, 185-198 (1998). [22] D. L. Schacter, R. L. Buckner, W. Koutstaal et al., “Late onset of anterior prefrontal activity during true and false recognition: an event-related fMRI study,” Neuroimage 6, 259-269 (1997). [23] G. K. Aguirre, E. Zarahn, and M. D'Esposito, “The variability of human, BOLD hemodynamic responses,” Neuroimage 8, 360-369 (1998). [24] M. D'Esposito, E. Zarahn, G. K. Aguirre et al., “The effect of normal aging on the coupling of neural activity to the bold hemodynamic response,” Neuroimage 10, 6-14 (1999). [25] M. Singh, T. Kim, H. Kim et al., “Separation of veins from activated brain tissue in functional magnetic resonance images at 1.5T,” Nuclear Science, IEEE Transactions on 42, 1338-1342 (1995). [26] F. M. Miezin, L. Maccotta, J. M. Ollinger et al., “Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing,” Neuroimage 11, 735-759 (2000). [27] H. L. Liu, Y. Pu, L. D. Nickerson et al., “Comparison of the temporal response in perfusion and BOLD-based event-related functional MRI,” Magn Reson Med 43, 768-772(2000) [28] H. Lu, X. Golay, J. J. Pekar et al.,” Functional magnetic resonance imaging based on changes in vascular space occupancy,” Magn Reson Med 50, 263-274(2003) [29] D. Le Bihan, S. Urayama, T. Aso et al.,” Direct and fast detection of neuronal activation in the human brain with diffusion MRI,” Proc Natl Acad Sci U S A 103, 8263-8268(2006) [30] H. L. Liu, J. C. Huang, J. J. Wang et al., “The effects of single-trial averaging on the temporal resolution of functional MRI,” Magn Reson Imaging 24, 597-602 (2006). [31] I. Kida, P. K. Maciejewski, and F. Hyder, “Dynamic imaging of perfusion and oxygenation by functional magnetic resonance imaging,” J Cereb Blood Flow Metab 24, 1369-1381 (2004). [32] O. Speck and J. Hennig, “Functional imaging by I0- and T2*-parameter mapping using multi-image EPI,” Magn Reson Med 40, 243-248 (1998). [33] C. J. Wiggins and D. G. Norris, “Investigation of inflow effects on fMRI at 3T,” in Proceedings of the ISMRM 8th Annual Meeting, (Denver, Colorado, USA, 2002) pp.942. [34] A. C. Ngai and H. R. Winn, “Estimation of shear and flow rates in pial arterioles during somatosensory stimulation,” Am J Physiol 270, H1712-1717 (1996). [35] A. C. Ngai and H. R. Winn, “Pial arteriole dilation during somatosensory stimulation is not mediated by an increase in CSF metabolites,” Am J Physiol Heart Circ Physiol 282, H902-907 (2002). [36] K. Yamada, S. Naruse, K. Nakajima et al., “Flow velocity of the cortical vein and its effect on functional brain MRI at 1.5T: preliminary results by cine-MR venography,” J Magn Reson Imaging 7, 347-352 (1997). [37] J. A. de Zwart, A. C. Silva, P. van Gelderen et al., “Temporal dynamics of the BOLD fMRI impulse response,” Neuroimage 24, 667-677 (2005).
|