跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 10:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏珮珊
研究生(外文):Pei Shan Wei
論文名稱:梯度回音面迴訊造影之事件相關功能性磁振造影技術中血液流入效應對血流動力反應的影響評估
論文名稱(外文):Inflow Effects on Hemodynamic Responses Characterized by Event-related fMRI Using Gradient- echo EPI Sequences
指導教授:劉鶴齡
指導教授(外文):H. L. Liu
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學物理暨影像科學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:39
中文關鍵詞:血液流入效應功能性磁振造影血流動力反應梯度回音面迴訊造影偏折角
外文關鍵詞:Inflow effectfMRIHemodynamic responseGradient-echo EPIFlip angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的是探討血液流入效應是否會影響血氧濃度相關對比之功能性磁振造影訊號改變的時間反應於典型的事件相關模式。流入效應的貢獻在血流動力反應對重覆之短視覺刺激重複單次試驗於梯度回音面迴訊造影波序中藉由改變偏折角從300 到 900且重複時間為1 秒的方式被評估。 對於每個偏折角(Flip angle)的實驗 (300、 600 及 900), 執行30 個試驗於1.5T 和3T 的磁振造影掃描儀。比較血氧濃度相關對比百分比,發現到顯著的血液流入效應在3T的實驗同時有統計上顯著差異。使用偏折角900血氧濃度相關可以看到潛沉時間顯著的比使用偏折角900 晚。落下時間於偏折角300的反應比偏折角900的還要早,但沒有統計上的差異。使用像素間分析,潛沉時間變異性決定於視覺活化區的不同對比雜訊比水平。在相同對比雜訊比水平下,使用偏折角900血氧濃度相關可以觀察顯著較大的潛沉時間變異性的比起使用偏折角300 。本篇論文建議如下:血液流入效應貢獻對血氧濃度相關反應會造成較短的潛沉時間並且增加潛沉時間變異性在所觀察的功能性腦區內。
The purpose of this study is to determine whether blood inflow impacts the temporal behavior of BOLD-contrast fMRI signal changes in a typical event-related paradigm. The inflow contributions in the hemodynamic response to repeated single-trials of short visual stimulation were assessed with a gradient-echo EPI sequence by altering the flip angle (FA) from 300 to 900 at a repetition time of 1 s. For each FA condition (300, 600 and 900), 30 trials were performed on both 1.5 T and 3 T MRI scanners. Comparing the percent BOLD contrast, prominent inflow effects were found at 3 T with marginal significance between the 900- and 300-FA conditions (0.73 ± 0.15 vs. 0.67 ± 0.12 %, p = 0.028). BOLD responses with FA = 300 exhibited latencies significantly slower than those with FA = 900 (3.69 ± 0.39 s vs. 3.37 ± 0.28 s, p = 0.001). The falling time of the 300-FA responses was earlier but not statistically different from that of the 900-FA (8.17 ± 1.04 s vs. 8.03± 1.15 s, p = 0.3). Using a voxelwise analysis, the latency variations of the activated visual areas were determined at several contrast-to-noise ratio (CNR) levels (controlled by averaging different numbers of randomly selected trials). The 900-FA responses demonstrated greater latency variations than the 300-FA ones when comparing at the same CNR levels. This study suggests that inflow effects contribute to the BOLD response, resulting in shorter latency and increased variability within a functional region.
國家圖書館授權書 iii
長庚大學圖書館授權書 iv
致謝 v
摘要 vi
ABSTRACT vii
TABLE OF CONTENTS viii
LIST OF FIGURES x
Chapter I INTRODUCTION - 1 -
1.1 Background - 1 -
1.2 Purpose of the study - 3 -
Chapter II MATERIALS AND METHODS - 4 -
2.1 Subjects - 4 -
2.2 Experimental design - 4 -
2.3 MRI acquisition - 5 -
2.4 Data analysis - 5 -
Chapter III RESULTS - 9 -
Chapter IV DISCUSSION and CONCLUSION - 13 -
REFERENCES - 17 -

LIST OF TABLES
Table 1 - 22 -
Table 2 - 23 -
Table 3 - 24 -

LIST OF FIGURES
Figure 1 - 25 -
Figure 2 - 26 -
Figure 3 - 27 -
Figure 4 - 28 -
[1] P. A. Bandettini, E. C. Wong, R. S. Hinks et al., “Time course EPI of human brain function during task activation,” Magn Reson Med 25, 390-397 (1992).
[2] K. K. Kwong, J. W. Belliveau, D. A. Chesler et al., “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc Natl Acad Sci U S A 89, 5675-5679 (1992).
[3] S. Ogawa, D. W. Tank, R. Menon et al., “Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging,” Proc Natl Acad Sci U S A 89, 5951-5955 (1992).
[4] B. E. Hoppel, R. M. Weisskoff, K. R. Thulborn et al., “Measurement of regional blood oxygenation and cerebral hemodynamics,” Magn Reson Med 30, 715-723 (1993).
[5] J. W. Belliveau, D. N. Kennedy, Jr., R. C. McKinstry et al., “Functional mapping of the human visual cortex by magnetic resonance imaging,” Science 254, 716-719 (1991).
[6] X. Hu, E. Yacoub, T. H. Le et al., in Functional MRI, edited by C. T. W. Moonen and P. A. Bandettini (Springer-Verlag, Mauer, 1999), pp. 243-252.
[7] H. Lu, X. Golay, and P. C. van Zijl, “Intervoxel heterogeneity of event-related functional magnetic resonance imaging responses as a function of T(1) weighting,” Neuroimage 17, 943-955 (2002).
[8] J. H. Duyn, C. T. Moonen, G. H. van Yperen et al., “Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5 T,” NMR Biomed 7, 83-88 (1994).
[9] J. Frahm, K. D. Merboldt, W. Hanicke et al., “Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation,” NMR Biomed 7, 45-53 (1994).
[10] J. H. Gao, I. Miller, S. Lai et al., “Quantitative assessment of blood inflow effects in functional MRI signals,” Magn Reson Med 36, 314-319 (1996).
[11] G. H. Glover, S. K. Lemieux, M. Drangova et al., “Decomposition of inflow and blood oxygen level-dependent (BOLD) effects with dual-echo spiral gradient-recalled echo (GRE) fMRI,” Magn Reson Med 35, 299-308 (1996).
[12] A. M. Howseman, S. Grootoonk, D. A. Porter et al., “The effect of slice order and thickness on fMRI activation data using multislice echo-planar imaging,” Neuroimage 9, 363-376 (1999).
[13] Y. Mazaheri, B. B. Biswal, B. D. Ward et al., “Measurements of tissue T1 spin-lattice relaxation time and discrimination of large draining veins using transient EPI data sets in BOLD-weighted fMRI acquisitions,” Neuroimage 32, 603-615 (2006).
[14] C. W. Wu, J. H. Chen, and H. L. Liu, “Dependencd of inflow effect in BOLD fMRI signal on magnetic field strength,” in Proceedings of the ISMRM 13th Annual Meeting, (Miami, Florida, USA, 2005), pp.1042
[15] F. Kruggel and D. Y. von Cramon, “Temporal properties of the hemodynamic response in functional MRI,” Hum Brain Mapp 8, 259-271 (1999).
[16] P. A. Bandettini, in Functional MRI, edited by C. T. W. Moonen and P. A. Bandettini (Springer-Verlag, Mauer, 1999), pp. 205-220.
[17] R. L. Buckner, P. A. Bandettini, K. M. O'Craven et al., “Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging,” Proc Natl Acad Sci U S A 93, 14878-14883 (1996).
[18] R. L. Buckner, W. Koutstaal, D. L. Schacter et al., “Functional-anatomic study of episodic retrieval. II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis,” Neuroimage 7, 163-175 (1998).
[19] S. G. Kim, W. Richter, and K. Ugurbil, “Limitations of temporal resolution in functional MRI,” Magn Reson Med 37, 631-636 (1997).
[20] A. T. Lee, G. H. Glover, and C. H. Meyer, “Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging,” Magn Reson Med 33, 745-754 (1995).
[21] M. D. Robson, J. L. Dorosz, and J. C. Gore, “Measurements of the temporal fMRI response of the human auditory cortex to trains of tones,” Neuroimage 7, 185-198 (1998).
[22] D. L. Schacter, R. L. Buckner, W. Koutstaal et al., “Late onset of anterior prefrontal activity during true and false recognition: an event-related fMRI study,” Neuroimage 6, 259-269 (1997).
[23] G. K. Aguirre, E. Zarahn, and M. D'Esposito, “The variability of human, BOLD hemodynamic responses,” Neuroimage 8, 360-369 (1998).
[24] M. D'Esposito, E. Zarahn, G. K. Aguirre et al., “The effect of normal aging on the coupling of neural activity to the bold hemodynamic response,” Neuroimage 10, 6-14 (1999).
[25] M. Singh, T. Kim, H. Kim et al., “Separation of veins from activated brain tissue in functional magnetic resonance images at 1.5T,” Nuclear Science, IEEE Transactions on 42, 1338-1342 (1995).
[26] F. M. Miezin, L. Maccotta, J. M. Ollinger et al., “Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing,” Neuroimage 11, 735-759 (2000).
[27] H. L. Liu, Y. Pu, L. D. Nickerson et al., “Comparison of the temporal response in perfusion and BOLD-based event-related functional MRI,” Magn Reson Med 43, 768-772(2000)
[28] H. Lu, X. Golay, J. J. Pekar et al.,” Functional magnetic resonance imaging based on changes in vascular space occupancy,” Magn Reson Med 50, 263-274(2003)
[29] D. Le Bihan, S. Urayama, T. Aso et al.,” Direct and fast detection of neuronal activation in the human brain with diffusion MRI,” Proc Natl Acad Sci U S A 103, 8263-8268(2006)
[30] H. L. Liu, J. C. Huang, J. J. Wang et al., “The effects of single-trial averaging on the temporal resolution of functional MRI,” Magn Reson Imaging 24, 597-602 (2006).
[31] I. Kida, P. K. Maciejewski, and F. Hyder, “Dynamic imaging of perfusion and oxygenation by functional magnetic resonance imaging,” J Cereb Blood Flow Metab 24, 1369-1381 (2004).
[32] O. Speck and J. Hennig, “Functional imaging by I0- and T2*-parameter mapping using multi-image EPI,” Magn Reson Med 40, 243-248 (1998).
[33] C. J. Wiggins and D. G. Norris, “Investigation of inflow effects on fMRI at 3T,” in Proceedings of the ISMRM 8th Annual Meeting, (Denver, Colorado, USA, 2002) pp.942.
[34] A. C. Ngai and H. R. Winn, “Estimation of shear and flow rates in pial
arterioles during somatosensory stimulation,” Am J Physiol 270, H1712-1717 (1996).
[35] A. C. Ngai and H. R. Winn, “Pial arteriole dilation during somatosensory stimulation is not mediated by an increase in CSF metabolites,” Am J Physiol Heart Circ Physiol 282, H902-907 (2002).
[36] K. Yamada, S. Naruse, K. Nakajima et al., “Flow velocity of the cortical vein and its effect on functional brain MRI at 1.5T: preliminary results by cine-MR venography,” J Magn Reson Imaging 7, 347-352 (1997).
[37] J. A. de Zwart, A. C. Silva, P. van Gelderen et al., “Temporal dynamics of the BOLD fMRI impulse response,” Neuroimage 24, 667-677 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top