1. Ohko Y., Tatsuma T. and Fujishima A., Characterization of TiO2 photocatalysis in the gas phase as a photoelectrochemical system: Behavior of salt-modified systems. Journal of Physical Chemistry B 105: 10016-10021 (2001).
2. Asahi R., Morikawa T., Ohwaki T., Aoki K. and Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293: 269-271 (2001).
3. Dvoranová D., Brezová V., Mazúr M. and Malati MA., Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B 37: 91-105 (2002).
4. Lin HF., Liao SC. and Hung SW., The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. Journal of Photochemistry and Photobiology A 174: 82-87 (2005).
5. Tsai CC. and Teng H., Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chemistry of Materials 16: 4352-4358 (2004).
6. Pat M., From micro-to nanomachining-towards the nanometer ear, Sensor Review 16(2): 4-10 (1996).
7. 彭國勝,「奈米科技與檢測技術」,財團法人工業技術研究院量測技術發展中心,工業技術研究院 (2003)。
8. 林正良,「奈米科技於傳統產業之應用」,台灣奈米科技,工業技術研究院 (2004)。
9. 劉仲明,「奈米材料」,台灣奈米科技,工業技術研究院 (2004)。
10. 曹茂盛,「奈米材料的基本概念與性質」,奈米材料導論,學富文化事業 (2002)。
11. Sun X., Yao L., Mo C., Shi G., Cai W., Zhang Y. and Zhang, L., Synthesis, microstructure and optical absorption of coatings with doping of nano-TiO2 for protection against ultraviolet irradiation Journal of Materials Science and Technology 16 (3): 277-280 (2000).
12. Du YW., Journal of Applied Physics 63: 4100-4104 (1998).
13. 廖世傑,林秀芬,洪松慰,董志偉,「奈米粉體製造與應用」,工業材料,工業技術研究院 (2003)。14. Nam HD., Lee BH., Kim SJ., Jung CH., Lee JH. and Park S., Preparation of ultrafine crystalline TiO2 powder from aqueous TiCl4 solution by precipitation, Japanese Journal of Applied Physics 37: 4603-4608 (1998).
15. Zheng Y., Shi E., Chen Z. and Li W., Influence of solution concentration on the hydrothermal preparation of titania crystallites, Journal of Materials Chemistry 11: 1547-1551 (2001).
16. Fujishima A. and Homda K., Electrochemical photolysis of water at a semiconductor electrode, Nature 238(1): 37-38 (1972).
17. Sakai H., Ito E., Cai R., Yoshioka T., Hashimoto K. and Fujishima A., Intracellular Ca2+ concentration change of T24 cell under irradiation in the presence of TiO2 ultrafine particles, Biochimica et Biophysica Acta - General Subjects 1201(2): 259-265 (1994).
18. 李定粵,「觸媒的原理與應用」,正中出版社 (1999)。
19. Beck JS., Vartuli JC., Roth WJ., Leonowicz ME., Kresge CT., Schmitt KD., Chu CTW., Olson DH. and Sheppard EW., A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society 114(27): 10834-10843 (1992).
20. 蕭宏,半導體製程技術導論,台灣培生教育出版 (2002)。
21. 資料來源:http://www.photocatalyst-aon-net.com.
22. Yates Jr. JT., Linsebigler AL. and Lu G., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews 95: 735-758 (1995).
23. Hiroshi T, 光觸媒圖解,商周出版 (2003)。
24. Park DW., Oh SM., Kim SS., Lee JE. and Ishigaki T., Effect of additives on photocatalytic active of titanium dioxide powders synthesized by thermal plasma, Thin Solid Films 453: 252-258 (2003).
25. Diebold U., The surface science of titanium dioxide, Surface Science Reports 48: 53-229 (2003).
26. Fujishima A., Hashimoto K. and Watanabe T., TiO2 photocatalysis fundamentals and application, Badger Kennel Club 124-126 (1999).
27. Borgarello E., Kiwi J., Gratzel M., Pelizzetti E. and Visca M., Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles, Journal of the American Chemical Society 104(11): 2996-3002 (1982).
28. Serpone N., Maruthamuthu P., Pichat P., Pelizzetti E. and Hidaka H., Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, Journal of Photochemistry and Photobiology A 85(3): 247-255 (1995).
29. Vohra MS. and Tanaka K., Photocatalytic degradation of aqueous pollutants using silica-modified TiO2, Water Research 36(16): 3992-3996 (2002).
30. Eqling GA. and Lin C., Photoassisted bleaching of dyes utilizing TiO2 and visible light, Chemosphere 46(4): 561-570 (2002).
31. Gratzel M., Ultrafast colour displays, Nature 409(6820): 575-576 (2001).
32. Yasumori A., Ishizu K., Hayashi S. and Okada K., Preparation of a TiO2 based multiple layer thin film photocatalyst, Journal of Materials Chemistry 8(11): 2521-2524 (1998).
33. Childs LP., Studied in photoassisted heterogeneous catalysis: rate equation for 2-methyl-2-butyl alcohol and isobutane oxidation and degradation of trichloroethylene and chloroform in dilute aqueous suspensions of titanium-dioxide, PhD Dissertation, Princeton University (1980).
34. Choi W., Termin A. and Hoffmann MR., The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics Journal of Physical Chemistry 98: 13669-13679 (1994).
35. Vinodgopal K. and Kamat PV., Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films, Solar Energy Materials and Solar Cells 38(1-4): 401-410 (1995).
36. Wilke K. and Breuer HD., The influence of transition metal doping on the physical and photocatalytic properties of titania, Journal of Photochemistry and Photobiology A 121: 49-53 (1999).
37. Asahi R., Morikawa T., Ohwaki T., Aoki K. and Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293: 269-271 (2001).
38. Umebayashi T., Yamaki T., Itoh H. and Asai K., Band gap narrowing of titanium dioxide by sulfur doping, Applied Physics Letters 81 (3): 454 (2002).
39. Sakthivel S. and Kisch H., Daylight photocatalysis by carbon-modified titanium dioxide, Angewandte Chemie 42 (40): 4908-4911 (2003).
40. Miao L., Tanemura S., Watanabe H., Mori Y., Kaneko K. and Toh S., The improvement of optical reactivity for TiO2 thin films by N2-H2 plasma surface treatment, Journal of Crystal Growth 260 (1-2): 118-124 (2004).
41. Luo H., Takata T., Lee Y., Zhao J., Domen K. and Yan Y., Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine, Chemistry of Materials 16 (5): 846-849 (2004).
42. Sakthivel S., Janczarek M. and Kisch H., Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, Journal of Physical Chemistry B 108 (50): 19384-19387 (2004).
43. Yu JC., Ho W., Yu J., Yip H., Wong PK. and Zhao J., Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environmental Science and Technology 39 (4): 1175-1179 (2005).
44. Futsuhara M., Yoshioka K. and Takai O., Optical properties of zinc oxynitride thin films, Thin Solid Films 317 (1-2): 322-325 (1998).
45. Brigham ES., Weisbecker CS., Rudzinski WE. and Mallouk TE., Stabilization of intrazeolitic cadmium telluride nanoclusters by ion exchange, Chemistry of Materials 8 (8): 2121-2127 (1996)
46. Barton DG., Shtein M., Wilson RD., Soled SL. and Iglesia E., Structure and electronic properties of solid acids based on tungsten oxide nanostructures, Journal of Physical Chemistry B 103 (4): 630-640 (1999).
47. Argyle MD., Chen K., Resini C., Krebs C., Bell AT. and Iglesia E., Extent of reduction of vanadium oxides during catalytic oxidation of alkanes measured by in-situ UV-visible spectroscopy, Journal of Physical Chemistry B 108 (7): 2345-2353 (2004).
48. Brigham ES., Weisbecker CS., Rudzinski WE. and Mallouk TE., Stabilization of intrazeolitic cadmium telluride nanoclusters by ion exchange, Chemistry of Materials 8: 2121-2127 (1996).
49. Yu Y., Yu JC., Chan CY., Che YK., Zhao JC., Ding L., Ge WK. and Wong PK., Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye, Applied Catalysis B: Environmental 61: 1-11 (2005).
50. Yu Y., Yu JC., Yu JG., Kwok YG., Che YK., Zhao JC., Ding L, Ge WK. and Wong PK., Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes, Applied Catalysis A: General 289: 186-196 (2005).