跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/15 16:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:韓道昀
論文名稱:可見光二氧化鈦奈米光觸媒效能之研究
論文名稱(外文):IInvestigation on Photocatalytic Efficiency of TiO2 Photocatalysts under Visible Illumination
指導教授:吳卓夫
學位類別:博士
校院名稱:中華大學
系所名稱:土木與工程資訊學系(所)
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:102
中文關鍵詞:二氧化鈦奈米微粒水熱合成法可見光光觸媒甲基藍
外文關鍵詞:Titania nanoparticleHydrothermal treatmentVisible-light photocatalysisMethylene blue
相關次數:
  • 被引用被引用:6
  • 點閱點閱:2443
  • 評分評分:
  • 下載下載:291
  • 收藏至我的研究室書目清單書目收藏:1
本研究係以水熱法將三種不同金屬(鐵、鈷、鎳)成功的添加市售二氧化鈦光觸媒中,以提升其可見光光解甲基藍之效能。由氮氣吸附曲線可觀察出,添加不同金屬後之二氧化鈦粉體,其比表面積及孔徑分佈與添加前並無改變。在漫反射光譜分析中,添加金屬離子後之二氧化鈦粉体在400〜700 nm奈米波長範圍裡有光線吸收峰值,並向可見光區轉移。根據Kubelka-Munk圖表計算得知,在添加相同濃度金屬溶液之狀況下,光觸媒材料其能隙大小依序為;添加鐵(2.98eV)>添加鈷(2.88eV)>添加鎳(2.63eV)。而Langmuir-Hinshelwood模式可求出在液相環境中,光觸媒光解甲基藍的活性大小。根據以上各種分析結果發現,隨著光觸媒能隙值越低,其光分解之活性就越高。此現象歸因於添加金屬的二氧化鈦光觸媒有較狹窄的能階,當受到可見光激發時,其電子電洞對能有較佳之活性來進行氧化還原反應,因而達到最佳的可見光光解效能。
本研究以水熱法合成之可見光光觸媒,能有效的光解有機染料。在實際效能驗證方面,吾人以吐司及瓷磚為載具,進行可見光光解效能測試。實驗結果指出,添加金屬離子後之二氧化鈦光觸媒能有效的抑制大腸桿菌生長,得以延長吐司的防腐期。另一方面,經過添加金屬之二氧化鈦光觸媒塗佈之磁磚,在兩週後表面依舊保持清潔,而以市售商用二氧化鈦光觸媒塗佈之瓷磚,其在可見光下對大腸桿菌並不具殺菌/抑菌之能力,大腸桿菌依舊可以在瓷磚上滋長。正因為這些獨特之效能,本研究之合成技術確能提供具有經濟效益之可見光奈米光觸媒製造方法,可廣泛應用於室內各項營建材料,改善環境品質。
In this dissertation, a hydrothermal treatment was employed to doping three types of metal ions (Fe, Co, and Ni) into commercial TiO2 photocatalysts for improving the photocatalytic reactivity of methylene blue (MB) under visible light irradiation. Nitrogen physisorption measurement indicated that surface areas and porosities of metal-doped titania powders still maintain an identical value, comparing to the starting material. The diffuse reflection spectra of metal-doped titania reflected a light absorption edge, shifting to the visible light range of ca. 400–700 nm. According to Kubelka-Munk plot, the optical band gaps were found to have the following order: Fe-doping (2.98 eV) > Co-doping (2.88 eV) > Ni-doping (2.63 eV), based on the fixed dopant concentration. A Langmuir-Hinshelwood model was used to investigate the photocatalytic activity for removing MB from liquid phase. It was found that the decreasing optical band gap is accompanied by increasing photo degradation activity of MB. This result can be attributed to a fact that metal-doped titania photocatalyst with the narrowest band gap is capable of generating better redox ability of electron–hole pairs under visible light, thus leading to the greatest photocatalytic activity.
According to the results, the visible-light-derived photocatalysts prepared by the above hydrothermal synthesis exhibit an excellent photocatalytic capability in decomposing organic dyes. In practical operation, we employed ceramic tile and toast as substrates for evaluating the photocatalytic ability under visible illumination. Experimental results indicated that the metal-doped titania photocatalysts enable to prevent the growth of E. coli, thus extending the anti-spoiled period of toast. After coating them onto ceramic tile, the prepared tile leads to keep a cleaner surface than the tile coated with commercial photocatalysts after two weeks. This fascinating effect proves that this fabrication technique is an efficient method in preparing visible-light-derived photocatalysts that can be extensively used in a variety of applications such as indoor decoration, ceramic tile, glass, house furnishings, and so on.
第一章 緒 論 1
1.1 研究動機 1
1.2 研究範圍 2
1.3 研究目的 3
1.4 研究方法 4
1.5 研究流程 5
第二章 奈米科技發展回顧 6
2.1 奈米科技的源起與定義 6
2.1.1 奈米的定義 8
2.1.2 奈米科技涵蓋範圍 8
2.1.3 奈米材料科技之發展過程 9
2.2 奈米材料 12
2.2.1 原子團簇 13
2.2.2 奈米微粒 13
2.2.3 奈米微粒的物理性質與化學性質 14
2.3 奈米材料之製備技術 17
2.3.1 製備奈米粒子的物理方法 18
2.3.2 製備奈米粒子的化學方法 21
第三章 奈米光觸媒發展回顧 26
3.1 觸媒與半導體基本原理 26
3.2 光觸媒催化反應基本原理 31
3.3 TiO2奈米光觸媒之物理性質 32
3.4 TiO2奈米光觸媒之光化學催化反應 36
3.5 可見光TiO2奈米光觸媒製作之研究 41
第四章 實驗計畫 43
4.1 實驗藥品 43
4.2 實驗儀器裝置 44
4.3 實驗方法 45
4.4 實驗流程 46
4.5 特性分析與性質測試 47
4.5.1 光觸媒粉體之表面形態檢測 47
4.5.2 光觸媒粉體之晶相關察 49
4.5.3 比表面積及孔隙度分析 51
4.5.4 晶體微結構分析 54
4.5.5 光觸媒之吸收光譜分析 55
第五章 實驗結果討論分析 58
5.1 TiO2之結構與表面特性分析 58
5.1.1 TiO2奈米粉體之表面積與孔洞分佈 58
5.1.2 TiO2奈米粉體之表面形態 60
5.1.3 TiO2奈米粉體之晶體結構 62
5.2 TiO2之紫外-可見光吸收光譜分析 64
5.3 可見光TiO2奈米光觸媒之活性測試 69
5.4 實驗結論 74
第六章 可見光TiO2奈米光觸媒效能驗證 75
6.1 實驗藥品 75
6.2 實驗方法 76
6.3實驗流程 77
6.4 可見光奈米光觸媒效能驗證 78
第七章 結論與建議 93
7.1 結論 93
7.2 建議與後續研究 95
參考文獻 97
1. Ohko Y., Tatsuma T. and Fujishima A., Characterization of TiO2 photocatalysis in the gas phase as a photoelectrochemical system: Behavior of salt-modified systems. Journal of Physical Chemistry B 105: 10016-10021 (2001).
2. Asahi R., Morikawa T., Ohwaki T., Aoki K. and Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293: 269-271 (2001).
3. Dvoranová D., Brezová V., Mazúr M. and Malati MA., Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B 37: 91-105 (2002).
4. Lin HF., Liao SC. and Hung SW., The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. Journal of Photochemistry and Photobiology A 174: 82-87 (2005).
5. Tsai CC. and Teng H., Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chemistry of Materials 16: 4352-4358 (2004).
6. Pat M., From micro-to nanomachining-towards the nanometer ear, Sensor Review 16(2): 4-10 (1996).
7. 彭國勝,「奈米科技與檢測技術」,財團法人工業技術研究院量測技術發展中心,工業技術研究院 (2003)。
8. 林正良,「奈米科技於傳統產業之應用」,台灣奈米科技,工業技術研究院 (2004)。
9. 劉仲明,「奈米材料」,台灣奈米科技,工業技術研究院 (2004)。
10. 曹茂盛,「奈米材料的基本概念與性質」,奈米材料導論,學富文化事業 (2002)。
11. Sun X., Yao L., Mo C., Shi G., Cai W., Zhang Y. and Zhang, L., Synthesis, microstructure and optical absorption of coatings with doping of nano-TiO2 for protection against ultraviolet irradiation Journal of Materials Science and Technology 16 (3): 277-280 (2000).
12. Du YW., Journal of Applied Physics 63: 4100-4104 (1998).
13. 廖世傑,林秀芬,洪松慰,董志偉,「奈米粉體製造與應用」,工業材料,工業技術研究院 (2003)。
14. Nam HD., Lee BH., Kim SJ., Jung CH., Lee JH. and Park S., Preparation of ultrafine crystalline TiO2 powder from aqueous TiCl4 solution by precipitation, Japanese Journal of Applied Physics 37: 4603-4608 (1998).
15. Zheng Y., Shi E., Chen Z. and Li W., Influence of solution concentration on the hydrothermal preparation of titania crystallites, Journal of Materials Chemistry 11: 1547-1551 (2001).
16. Fujishima A. and Homda K., Electrochemical photolysis of water at a semiconductor electrode, Nature 238(1): 37-38 (1972).
17. Sakai H., Ito E., Cai R., Yoshioka T., Hashimoto K. and Fujishima A., Intracellular Ca2+ concentration change of T24 cell under irradiation in the presence of TiO2 ultrafine particles, Biochimica et Biophysica Acta - General Subjects 1201(2): 259-265 (1994).
18. 李定粵,「觸媒的原理與應用」,正中出版社 (1999)。
19. Beck JS., Vartuli JC., Roth WJ., Leonowicz ME., Kresge CT., Schmitt KD., Chu CTW., Olson DH. and Sheppard EW., A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society 114(27): 10834-10843 (1992).
20. 蕭宏,半導體製程技術導論,台灣培生教育出版 (2002)。
21. 資料來源:http://www.photocatalyst-aon-net.com.
22. Yates Jr. JT., Linsebigler AL. and Lu G., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews 95: 735-758 (1995).
23. Hiroshi T, 光觸媒圖解,商周出版 (2003)。
24. Park DW., Oh SM., Kim SS., Lee JE. and Ishigaki T., Effect of additives on photocatalytic active of titanium dioxide powders synthesized by thermal plasma, Thin Solid Films 453: 252-258 (2003).
25. Diebold U., The surface science of titanium dioxide, Surface Science Reports 48: 53-229 (2003).
26. Fujishima A., Hashimoto K. and Watanabe T., TiO2 photocatalysis fundamentals and application, Badger Kennel Club 124-126 (1999).
27. Borgarello E., Kiwi J., Gratzel M., Pelizzetti E. and Visca M., Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles, Journal of the American Chemical Society 104(11): 2996-3002 (1982).
28. Serpone N., Maruthamuthu P., Pichat P., Pelizzetti E. and Hidaka H., Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, Journal of Photochemistry and Photobiology A 85(3): 247-255 (1995).
29. Vohra MS. and Tanaka K., Photocatalytic degradation of aqueous pollutants using silica-modified TiO2, Water Research 36(16): 3992-3996 (2002).
30. Eqling GA. and Lin C., Photoassisted bleaching of dyes utilizing TiO2 and visible light, Chemosphere 46(4): 561-570 (2002).
31. Gratzel M., Ultrafast colour displays, Nature 409(6820): 575-576 (2001).
32. Yasumori A., Ishizu K., Hayashi S. and Okada K., Preparation of a TiO2 based multiple layer thin film photocatalyst, Journal of Materials Chemistry 8(11): 2521-2524 (1998).
33. Childs LP., Studied in photoassisted heterogeneous catalysis: rate equation for 2-methyl-2-butyl alcohol and isobutane oxidation and degradation of trichloroethylene and chloroform in dilute aqueous suspensions of titanium-dioxide, PhD Dissertation, Princeton University (1980).
34. Choi W., Termin A. and Hoffmann MR., The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics Journal of Physical Chemistry 98: 13669-13679 (1994).
35. Vinodgopal K. and Kamat PV., Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films, Solar Energy Materials and Solar Cells 38(1-4): 401-410 (1995).
36. Wilke K. and Breuer HD., The influence of transition metal doping on the physical and photocatalytic properties of titania, Journal of Photochemistry and Photobiology A 121: 49-53 (1999).
37. Asahi R., Morikawa T., Ohwaki T., Aoki K. and Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293: 269-271 (2001).
38. Umebayashi T., Yamaki T., Itoh H. and Asai K., Band gap narrowing of titanium dioxide by sulfur doping, Applied Physics Letters 81 (3): 454 (2002).
39. Sakthivel S. and Kisch H., Daylight photocatalysis by carbon-modified titanium dioxide, Angewandte Chemie 42 (40): 4908-4911 (2003).
40. Miao L., Tanemura S., Watanabe H., Mori Y., Kaneko K. and Toh S., The improvement of optical reactivity for TiO2 thin films by N2-H2 plasma surface treatment, Journal of Crystal Growth 260 (1-2): 118-124 (2004).
41. Luo H., Takata T., Lee Y., Zhao J., Domen K. and Yan Y., Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine, Chemistry of Materials 16 (5): 846-849 (2004).
42. Sakthivel S., Janczarek M. and Kisch H., Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, Journal of Physical Chemistry B 108 (50): 19384-19387 (2004).
43. Yu JC., Ho W., Yu J., Yip H., Wong PK. and Zhao J., Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environmental Science and Technology 39 (4): 1175-1179 (2005).
44. Futsuhara M., Yoshioka K. and Takai O., Optical properties of zinc oxynitride thin films, Thin Solid Films 317 (1-2): 322-325 (1998).
45. Brigham ES., Weisbecker CS., Rudzinski WE. and Mallouk TE., Stabilization of intrazeolitic cadmium telluride nanoclusters by ion exchange, Chemistry of Materials 8 (8): 2121-2127 (1996)
46. Barton DG., Shtein M., Wilson RD., Soled SL. and Iglesia E., Structure and electronic properties of solid acids based on tungsten oxide nanostructures, Journal of Physical Chemistry B 103 (4): 630-640 (1999).
47. Argyle MD., Chen K., Resini C., Krebs C., Bell AT. and Iglesia E., Extent of reduction of vanadium oxides during catalytic oxidation of alkanes measured by in-situ UV-visible spectroscopy, Journal of Physical Chemistry B 108 (7): 2345-2353 (2004).
48. Brigham ES., Weisbecker CS., Rudzinski WE. and Mallouk TE., Stabilization of intrazeolitic cadmium telluride nanoclusters by ion exchange, Chemistry of Materials 8: 2121-2127 (1996).
49. Yu Y., Yu JC., Chan CY., Che YK., Zhao JC., Ding L., Ge WK. and Wong PK., Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye, Applied Catalysis B: Environmental 61: 1-11 (2005).
50. Yu Y., Yu JC., Yu JG., Kwok YG., Che YK., Zhao JC., Ding L, Ge WK. and Wong PK., Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes, Applied Catalysis A: General 289: 186-196 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top