|
[1] 林文修, “Data Mining 探索( 上)”, 決策論壇, 第13 期, 1998 。 http://lab.geog.ntu.edu.tw/course/ginformation/relative%20papers/Data%20Minin g01.htm [2] 陳星壁,“以關連法則探勘為基礎之電路版件維修輔助系統”,中華大學資訊 工程研究所碩士論文,2006。 [3] 葉志豪,“探勘家族特徵樹中之關聯規則”,國立中央大學資訊管理研究所碩 士論文,2004。 [4] 劉信義,”關聯法則挖礦法之研究-採用群聚壓縮樹演算法”,電子商務與 數位學習研討會,2006。 [5] 羅仙旺,“應用排序索引修剪技術之高效率關連式法則演算法之研究”,中華 大學資訊工程研究所碩士論文,2003。 [6] Agrawal R., and Srikant R., “Fast algorithms for mining association rules”, Proceedings of the 20th International Conference on Very Large Data Bases VLDB' 1994. [7] Cheung W., and Zaiane O. R., “FrequentPattern Mining Without Candidate Generation or Support Constraint”,Master’s Thesis,University of Alberta, 2002. [8] Cheung W., and Zaiane O. R., “Incremental Mining of Frequent Patterns without Candidate Generation or Support Constraint,” Publication of the Seventh International Database Engineering and Applications Symposium, 2003. [9] Chiou Chuang-kai, and Tseng Judy C.R., “A Scalable Association Rules Mining Algorithm Based on Sorting, Indexing and Triming”, Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, August 19-22, 2007. [10] El-Hajj M., and Zaiane O. R., “COFI Approach for Mining Frequent Itemsets Revisited”, Proceedings of the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD June 13, 2004. [11] El-Hajj M., and Zaiane O. R., “Non Recursive Generation of Frequent K-itemsets from Frequent Pattern Tree Representations”,Data Warehousing and Knowledge Discovery, 5th International Conference, DaWaK, 2003. [12] Gao Jie., and Li Shaojun, “A Method of Improvement and Optimization on Association Rules Apriori Algorithm”,Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21 - 23, 2006. [13] Gopalan P., and Sucahyo Y. G., “Improving the Efficiency of Frequent Pattern Mining by Compact Data Structure Design”, Proceedings of the 4th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL2003), Hong Kong, 2003. [14] Gopalan R., and Sucahyo Y. G., “High Performance Frequent Patterns Extraction 62 using Compressed FP-Tree”, Proceedings of the SIAM International Workshop on High Performance and Distributed Mining, Orlando, USA, April 2004. [15] Gopalan Raj P., and Sucahyo Yudho Giri, “ Fast Frequent Itemset Mining using Compressed Data Representation”, AppliedInformatics 2003: 1203-1208,The 21st IASTED International Multi-Conference on Applied Informatics. [16] Grahne G., and Zhu J., “Fast Algorithms for Frequent Itemset Mining Using FP-Trees”,IEEE Transactions on Knowledge and Data Engineering, pages 1347-1362, 2005. [17] Han J., and Pei J., and Yin Y., “Mining Frequent Patterns without Candidate Generation”, Proc.2000 ACM-SIGMOD Int. Conf. on Management of Data. Dallas, 2000. [18] Hang Jian-Min., Chen Fu-Zan, and Zhang Qin, “An Efficient Algorithm for Finding All Frequent Itemsets”,Machine Learning and Cybernetics, 2006 International Conference on Publication Date Aug. 2006 [19] http://www.almaden.ibm.com/cs/disciplines/iis/ [20] Li Y. C., and Chang C. C., “A New FP-Tree Algorithm for Mining Frequent Itemsets”, AdvancedWorkshop on Content Computing (AWCC 2004). [21] Liu Junqiang, Pan Yunhe, and Wang Ke, and Han Jiawei, ”Mining Frequent Item Sets by Opportunistic Projection”,Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 23-26, 2002. [22] Pei. J., Han J., Mortazavi-Asl B., Pinto H. , Chen Q., Dayal U., and Hsu M. C., “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth” , Proceedings of 17th International Conference on Data Engineering, pp. 215-224, April 2-6, 2001. [23] Sucahyo Y. G., and Gopalan R. P., “CT-ITL: Efficient Frequent Item Set Mining Using a Compressed Prefix Tree with Pattern Growth”, Proceedings of 14th Australasian Database Conference, delaide, Australia, 2003. [24] Sucahyo Y. G., and Gopalan R. P., “CT-PRO: A Bottom-Up Non Recursive Frequent Itemset Mining Algorithm Using Compressed FP-Tree Data Structure”, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI), Brighton, UK, 2004. [25] Wang J., Han J., Lu Y., and Tzvetkov P., “TFP: An Efficient Algorithm for Mining Top-K Frequent Closed Itemsets”, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 5, pp.652-664, May 2005.
|