中文部分
1. 何俊德: 基於影像與文字特徵之網頁內容分類方法之研究,朝陽科技大學資管所碩士論文 (2004)2. 曾元顯,莊大衛: 文件自我擴展於自動分類之應用,輔仁大學圖書資訊學所(2005) 129-141
3. 陳榮昌,林育臣: 群聚演算法及群聚參數的分析, 朝陽學報 Vol.1(8) (2003) 327-3544. 曾元顯: 資訊檢索與知識探勘,輔仁大學圖書資訊系,2004
5. 曾元顯: 文件主題自動分類成效因素探討,輔仁大學圖書資訊系,中國圖書館學會會報, No.67 (2002) 62-836. 黃安橦: 應用支向機於晶圓圖類之研究,明新科技大學工管所(2005)
7. 劉冠妤,導入概念階層觀念以改善分群演算法之績效,成大資管所 (2004)
8. 蔡明倫: 二維點狀影像資訊之強化、特徵擷取及辨識-以X光乳房微鈣化檢測為例,大葉大學工工所碩士論文(2002)9. 鍾明璇: 應用關聯規則技術有效輔助以向量空間模型為基礎之文件群集法, 中原大學資訊管理學系碩士學位論文(2002)10. 韓歆儀: 應用兩階段分類法提升SVM法之分類準確率,成大工管所碩士論文(2004)11. 潘雅真: 企業式知識地圖,中華大學資管所碩士論文 (2004)英文部分
1. Bezdek, J. C.: Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press, (1981)
2. Chang, C., Lin, C.: LIBSVM: a library for suport vector machines. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm, (2001)
3. Chou, C.H., Han, C.C., Chen Y.H.: GA Based Optimal Keyword Extraction in an Automatic Chinese Web Document Classification System. Lecture Notes in Computer Science, Vol.4743(2007) 224-234
4. Dash, M., Liu, H., Xu, X.: `1+1>2': Merging distance and density based clustering. Proceedings of the Database Systems for Advanced Applications, Hong Kong (2001) 18-20.
5. Davidov, D., Gabrilovich, E., Markovitch, S.: Parameterized generation of labeled datasets for text categorization based on a hierarchical directory. Proceedings of the 27th Annual International ACM SIGIR, (2004) 250-257
6. Dorre, J., Gerstl, P., Seiffert, R.: Text mining: finding nuggets in mountains of textual data. Proceedings of the Knowledge Discovery and Data Mining, (1999) 398-401
7. Drucker H., Shahrary, B., David C. Gibbon: Support vector machines: relevance feedback and information retrieval. Information Processing & Management, Vol.38 (2002) 305-323
8. Eshelman, L.J., Caruana, R.A., Schaffer, J.D.: Biases in the Crossover Landscape. Proceedings of the 3rd Int’l Conference on Genetic Algorithms, (1989) 10-19
9. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: Density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Knowledge Discovery and Data Mining, (1996) 226-231
10. Everitt, B.: Cluster analysis, New York:Heinemann Educational Book, London (1974)
11. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. : From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining, (1996) 1-36
12. Gavrilis D, Tsoulos IG, Dermatas E.: Neural recognition and genetic features selection for robust detection of e-mail spam. Lecture notes in computer science, Vol.3955 (2006) 498–501
13. Goldberg, G. E.: Genetic algorithms in search, optimization and machine learning. Addison Wesley, (1989)
14. Han, J., Kamber, M.: Data mining: concepts and techniques. New York: Morgan Kaufmann Publishers, (2001)
15. Holland, J. H.: Adaptation in natural and artificial. Cambridge, (1975)
16. Hwee T.N., Wei B.G., Kok L.L.: Feature Selection, Perception Learning, and a Usability Case Study for Text Categorization. Proceedings of the 20th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, (1997) 67-73.
17. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. IEEE ,Computer, Vol.32(8) (1999) 68-75
18. Liu, D., Wang, Y., Liu C., Wang Z.: Multiple Documents Summarization Based on Genetic Algorithm. FSKD, (2006) 355-364
19. Lin, F.R., Hsueh, C.M., Knowledge Map Creation and Maintenance for Virtual Communities of Practice. Information Processing and Management, (2006) 551-568,.
20. López-Pujalte, C., Bote, V.P.G., de Moya Anegón, F.: A test of genetic algorithms in relevance feedback. Information Processing and Management. Vol.38(6) (2002) 793-805
21. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol.1 (1967) 281-297
22. Miyamoto, S.: Information clustering based on fuzzy multisets. Information Processing and Management, Vol.39 (2003)195–213.
23. Nello, C., John, S.T.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, (2000)
24. Onoda, T., Murata H., Yamada, S.: SVM-based Interactive document Retrieval with Active Learning. New Generation Computing, Vol.26 (2008) 49-61
25. Pal, M.R., Bezdek, J.C.: On Cluster Validity for the fuzzy c-means. IEEE Transactions on the Fuzzy Systems, Vol.3(3) (1995) 370-379.
26. Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and adaptive systems: fundamentals through simulations. John Wiley and Sons (2000)
27. Trotman, A.,: Choosing document structure weights. Information Processing and Management,Vol.41 (2005) 243-264
28. Van Rijsbergen, C. J.: Information Retrieval. Butterworths (1979)
29. Vapnik, V.: The nature of statistical learning theory. Springer Verlag, New York (1995)
30. Wang, T.Y., Chiang, H.M.: Fuzzy support vector machine for multi-class text categorization. Information Processing & Management, Vol.43 (2007) 914-929.
31. Xie L.X., Beni G.: A validity measure for fuzzy clustering. IEEE Trans. Pattem Anal. Machine Intell, Vol.13 (1991) 841-847,
32. Xu S., Wang H., Zhang Y.: Chinese Abbreviation-Definition Identification: A SVM Approach Using Context Information. ,PRICAI 2006, (2006) 495-504
33. Yang, Y., Pedersen, J.: A Comparative Study on Feature Selection in Text Categorization, Proceedings of the International Conference on Machine Learning, (1997) 412-420.
34. Youngjoong, K., Jinwoo P., Jungyun, S.: Improving text categorization using the importance of sentences, Information Processing & Management, Vol.40 (2004) 65-79