1. Sod, G. A., “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws,” J. of Computational Physics, Vol. 27, No. 1, 1978, pp. 1-31.
2. Arambatzis, G., Vavillis, P., Toulopoulos, I., and Ekaterinaris, J. A., “New Scheme for the Computation of Compressible Flows,” AIAA J., Vol. 44, No. 5, 2006, pp. 1025-1039.
3. Van Leer, B., “Flux Vector Splitting for the Euler Equations,” 8th International Conference of Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 170, Springer-Verlag, Berlin, 1989, pp. 507-512.
4. Roe, P. L., “Approximate Riemann Solver, Parameter Vectors, and Difference Scheme,” J. of Computational Physics, Vol. 43, No. 2, 1981, pp. 357-372.
5. Gudunov, S. K., “A Different Scheme for Numerical Computation of Discontinues Solution of Hydrodynamics Equations,” U.S. Joint Publications Research Service Rept., JPRS7226, New York, 1969.
6. Harten, A., “High-Resolution Schemes for Hyperbolic Conservation Law,” J. of Computational Physics, Vol. 49, No. 3, 1983, pp. 357-393.
7. Tadmor, E., “Convergence of Spectral Methods for Nonlinear Conservation Laws,” SIAM J. Numerical Analysis.Vol. 26, No. 30, 1989
8. Cook, A. W., and Cabot, W. H., “A High-wavenumber Viscosity for High-resolution Numerical Methods,” J. of Computational Physics, Vol. 195, 2004, pp. 594-601.
9. Fiorina, B., and Lele, S. K., “An Artificial Nonlinear Diffusivity Method for Supersonic Reacting Flows with Shocks,” J. of Computational Physics, Vol. 222, 2007, pp. 246-264.
10. Eidelman, S., Colella, P., and Shreeve, R. P., “Application of the Godunov Method and Its Second-Order Extension to Cascade Flow Modeling,” AIAA J., Vol. 22, No. 11, 1984, pp.1609-1615
11. Ghia, U., Ghia, K. N., and Shin, C. T., “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” J. of Computational Physics, Vol. 48, No. 3, 1982, pp. 387-411.
12. Yamaleev, N. K., and Ballmann, J., “Iterative Space-Marching Method for Compressible Sub-, Trans-, and Supersonic Flows,” AIAA J., Vol. 38, No. 2, 2000, pp.225-233.
13. Chorin, J., “A Numerical Method for Solving Incompressible Viscous Flow Problems,” J. of Computational Physics, Vol. 2, No. 1, 1967, pp. 12-26.
14. Choi, Y. H., and Merkle, C. L., “The Application of Preconditioning in Viscous Flows,” J. of Computational Physics, Vol. 105, No. 2, 1993, pp. 207-223.
15. Turkel, E., “Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations,” J. of Computational Physics, Vol. 72, No. 2, 1987, pp. 277-298.
16. Weiss, J. M., and Smith, W. A., “Preconditioning Applied to Variable and Constant Density Time-Accurate Flows on Unstructured Meshes,” AIAA J., Vol. 33, No. 11, 1995, pp.2050-2057.
17. Dailey, L. D., and Pletcher, R. H., “Evaluation of Multigrid Accelerating for Preconditioned Time-Accurate Navier-Stokes Algorithm,” AIAA Paper 95-1688, Jan, 1995.
18. Edwards, J. R., and Liou, M. S., “Low-Diffusion Flux-Splitting Methods for Flows at All Speeds,” AIAA J., Vol. 36, No. 9, 1998, pp.1610-1617.
19. Luo, H., Baum, J., and Lohner, R., “Extension of Harten-Lax-van Leer Scheme for Flows at All Speeds,” AIAA J., Vol. 43, No. 6, 2005, pp.1160-1166.
20. Barter, G. E., and Darmofal, D. L., “Shock Capturing with High-Order, PDE-Based Artificial Viscosity,” 18th AIAA Computational Fluid Dynamics Conference, 25-28 June, 2007, Miami, FL.
21. C.-W. Shu, S. Osher, “Efficient Implementation of Essentially Non-Oscillation Shock Capturing Schemes II,” J. of Computational Physics, Vol. 83, 1989, pp. 32-78.
22. Liepmann, H. W. and Roshko, A., “Elements of Gasdynamics,” California Institute of Technology, 1956.
23. 王國龍, “自然非穩態流場之層流與紊流分析,” 中華大學機航所碩士論文,新竹台灣,June, 200624. 陳炳煌, “不同紊流模式於迴流區域之分析與比較,” 中華大學機航所碩士論文,新竹台灣,June, 200625. 彭勇霖, “移動邊界下非穩態流場分析與驗證,” 中華大學機航所碩士論文,新竹台灣,June, 200626. D. Gaitonde, J. S. Shang, “Optimized Compact-Difference-Based Finite-Volume Schemes for Linear Wave Phenomena,” J. of Computational Physics, Vol. 138, 1997, pp. 617-643.
27. M. H. Kobayashi, “On a Class of Pade Finite Volume Methods” J. of Computational Physics, Vol. 156, 1999, pp. 137-180.
28. J. M. C. Pereira, M. H. Kobayashi, J. C. F. Pereira, “A Fourth-Order-Accurate Finite Volume Compact Method for the Incompressible Navier-Stokes Solutions,” J. of Computational Physics, Vol. 167, 2001, pp. 217-243.
29. R. Tanaka, T. Nakamura, T. Yabe, “Constructing Exactly Conservative Scheme in a Non-Conservative Form,” J. of Computational Physics,Commun, Vol. 126, 2000, pp. 232-243.
30. T. Yabe, R. Tanaka, T. Nakamura, F. Xiao, “An Exactly Conservative Semi-Lagrangian Scheme (CIP-CSL) in One Dimension,” Mon. Wea. Rev., Vol. 129, 2001, pp. 332-344.
31. T. Nakamura, R. Tanaka, T. Yabe, K. Takizawa, “Exactly Conservative Semi-Lagrangian Scheme for Multi-Dimensional Hyperbolic Equations with Directional Splitting Technique,” J. of Computational Physics, Vol. 147, 2001, pp. 171-207.
32. S. K. Lele, “Compact Finite Difference Schemes with Spectral-Like Resolution,” J. of Computational Physics, Vol. 103, 1992, pp. 16-42.
33. Y. Imai, T. Aoki, “Accuracy Study of the IDO Scheme by Fourier Analysis,” J. of Computational Physics, Vol. 217, 2006, pp. 453-472.
34. Y. Imai, T. Aoki, “Stable Coupling Between Vector and Scalar Variables for the IDO Scheme on Collocated Grids,” J. of Computational Physics, Vol. 215, 2006, pp. 81-97.
35. Y. Imai, T. Aoki, K. Takizawa, “Conservative Form of Interpolated differential Operator Scheme for Compressible and Incompressible Fluid Dynamics,” J. of Computational Physics, Vol. 227, 2008, pp. 2263-2285.