跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 04:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林群傑
研究生(外文):chun-chieh Lin
論文名稱:高階微分因子於可壓縮流場之分析
論文名稱(外文):High Order Differential Operator Scheme for Compressible Fluid Dynamics
指導教授:楊一龍
學位類別:碩士
校院名稱:中華大學
系所名稱:機械工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
中文關鍵詞:高階微分因子
外文關鍵詞:high order differential operator schemeSod’s problemShu-Osher problemdriven cavity problem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用高階自然型式之函數進行局部座標與流場變數之分配,並利用此一分佈函數之變數變換進行格點高階流通量之微分計算,再搭配時間積分來完成穩態或非穩態流場之計算。此方法應用於一維非穩態震波管之模擬上,於次音速下採用低階之分佈函數需要較多之格點數才能與解析解一致,但是在超音速流動下即使使用再多的格點數亦無法以低階方式達成接觸不連續面之解析,必須採用高階方式才可以有效的解決此一問題。其應用在二維無黏性穩態流場之分析上,不論在低馬赫數、次音速、穿音速或是超音速流場上,其模擬結果皆與參考文獻相當接近。至於在二維移動平板黏滯穴流分析上,採用低階之微分量與通量計算也是需要相當多之計算格點才能獲得較佳之解答,若是將速度與溫度梯度採用高階之微分法,則能以較少之網格數達成高精度及低震盪之解答。
High order natural shape functions were used to interpolate the physical coordinates and flow quantities locally. To calculate the high resolution fluxes at a point is based on the chain rule between the computational domain and physical domain. The Runge-Kutta time integration was used to march the solution. For one-dimensional shock tube problem, a higher grid resolution is required for a lower order scheme. When the flow reaches supersonic in the shock tube, it is hard to match the analytical solution by just using grid refinement for a low order scheme. A high order differential operator scheme is proposed. For low Mach number, subsonic, transonic and supersonic flows pass the two-dimensional circular bump, the results of simulations are very similar to reference solutions. For the lid-driven cavity problem, low order scheme provides less accurate solutions. Using high order differential operator to calculate the gradient of velocity and temperature alleviates the problem of oscillation and accuracy.
中文摘要……………………………………………………………I
英文摘要……………………………………………………………II
致謝…………………………………………………………………III
目錄…………………………………………………………………IV
圖目錄………………………………………………………………VI

第一章 緒論
1.1 前言……………………………………………………1
1.2 文獻回顧………………………………………………1
1.3 採用方法………………………………………………2
1.4 文章安排………………………………………………2
第二章 統馭方程式
2.1 Navier-Stokes方程式………………………………… 3
2.2 Shock tube 解析解 ……………………………………4
第三章 數值方法
3.1時間積分 ………………………………………………9
3.2有限元素微分法 ………………………………………9
3.3時間步階計算…………………………………………10
3.4人工黏滯………………………………………………17
3.5邊界條件
3.5-1外流場……………………………………………………19
3.5-2固體壁面…………………………………………………21
第四章 結果與討論
4.1一維震波管問題
4.1-1次音速Sod’s problem……………………………………22
4.1-2超音速Sod’s problem……………………………………26
4.1-3超音速Shu-Osher Shock-Disturbance Interaction………34
4.2二維無黏性可壓縮流分析
4.2-1低馬赫數…………………………………………………36
4.2-2次音速……………………………………………………38
4.2-3穿音速……………………………………………………40
4.2.4超音速……………………………………………………42
4.3二維黏性低馬赫數可壓縮流分析……………………46

第五章 結論與未來工作
5.1結論……………………………………………………51
5.2未來工作………………………………………………52
參考文獻…………………………………………………53
1. Sod, G. A., “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws,” J. of Computational Physics, Vol. 27, No. 1, 1978, pp. 1-31.
2. Arambatzis, G., Vavillis, P., Toulopoulos, I., and Ekaterinaris, J. A., “New Scheme for the Computation of Compressible Flows,” AIAA J., Vol. 44, No. 5, 2006, pp. 1025-1039.
3. Van Leer, B., “Flux Vector Splitting for the Euler Equations,” 8th International Conference of Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 170, Springer-Verlag, Berlin, 1989, pp. 507-512.
4. Roe, P. L., “Approximate Riemann Solver, Parameter Vectors, and Difference Scheme,” J. of Computational Physics, Vol. 43, No. 2, 1981, pp. 357-372.
5. Gudunov, S. K., “A Different Scheme for Numerical Computation of Discontinues Solution of Hydrodynamics Equations,” U.S. Joint Publications Research Service Rept., JPRS7226, New York, 1969.
6. Harten, A., “High-Resolution Schemes for Hyperbolic Conservation Law,” J. of Computational Physics, Vol. 49, No. 3, 1983, pp. 357-393.
7. Tadmor, E., “Convergence of Spectral Methods for Nonlinear Conservation Laws,” SIAM J. Numerical Analysis.Vol. 26, No. 30, 1989
8. Cook, A. W., and Cabot, W. H., “A High-wavenumber Viscosity for High-resolution Numerical Methods,” J. of Computational Physics, Vol. 195, 2004, pp. 594-601.
9. Fiorina, B., and Lele, S. K., “An Artificial Nonlinear Diffusivity Method for Supersonic Reacting Flows with Shocks,” J. of Computational Physics, Vol. 222, 2007, pp. 246-264.
10. Eidelman, S., Colella, P., and Shreeve, R. P., “Application of the Godunov Method and Its Second-Order Extension to Cascade Flow Modeling,” AIAA J., Vol. 22, No. 11, 1984, pp.1609-1615
11. Ghia, U., Ghia, K. N., and Shin, C. T., “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” J. of Computational Physics, Vol. 48, No. 3, 1982, pp. 387-411.
12. Yamaleev, N. K., and Ballmann, J., “Iterative Space-Marching Method for Compressible Sub-, Trans-, and Supersonic Flows,” AIAA J., Vol. 38, No. 2, 2000, pp.225-233.
13. Chorin, J., “A Numerical Method for Solving Incompressible Viscous Flow Problems,” J. of Computational Physics, Vol. 2, No. 1, 1967, pp. 12-26.
14. Choi, Y. H., and Merkle, C. L., “The Application of Preconditioning in Viscous Flows,” J. of Computational Physics, Vol. 105, No. 2, 1993, pp. 207-223.
15. Turkel, E., “Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations,” J. of Computational Physics, Vol. 72, No. 2, 1987, pp. 277-298.
16. Weiss, J. M., and Smith, W. A., “Preconditioning Applied to Variable and Constant Density Time-Accurate Flows on Unstructured Meshes,” AIAA J., Vol. 33, No. 11, 1995, pp.2050-2057.
17. Dailey, L. D., and Pletcher, R. H., “Evaluation of Multigrid Accelerating for Preconditioned Time-Accurate Navier-Stokes Algorithm,” AIAA Paper 95-1688, Jan, 1995.
18. Edwards, J. R., and Liou, M. S., “Low-Diffusion Flux-Splitting Methods for Flows at All Speeds,” AIAA J., Vol. 36, No. 9, 1998, pp.1610-1617.
19. Luo, H., Baum, J., and Lohner, R., “Extension of Harten-Lax-van Leer Scheme for Flows at All Speeds,” AIAA J., Vol. 43, No. 6, 2005, pp.1160-1166.
20. Barter, G. E., and Darmofal, D. L., “Shock Capturing with High-Order, PDE-Based Artificial Viscosity,” 18th AIAA Computational Fluid Dynamics Conference, 25-28 June, 2007, Miami, FL.
21. C.-W. Shu, S. Osher, “Efficient Implementation of Essentially Non-Oscillation Shock Capturing Schemes II,” J. of Computational Physics, Vol. 83, 1989, pp. 32-78.
22. Liepmann, H. W. and Roshko, A., “Elements of Gasdynamics,” California Institute of Technology, 1956.
23. 王國龍, “自然非穩態流場之層流與紊流分析,” 中華大學機航所碩士論文,新竹台灣,June, 2006
24. 陳炳煌, “不同紊流模式於迴流區域之分析與比較,” 中華大學機航所碩士論文,新竹台灣,June, 2006
25. 彭勇霖, “移動邊界下非穩態流場分析與驗證,” 中華大學機航所碩士論文,新竹台灣,June, 2006
26. D. Gaitonde, J. S. Shang, “Optimized Compact-Difference-Based Finite-Volume Schemes for Linear Wave Phenomena,” J. of Computational Physics, Vol. 138, 1997, pp. 617-643.
27. M. H. Kobayashi, “On a Class of Pade Finite Volume Methods” J. of Computational Physics, Vol. 156, 1999, pp. 137-180.
28. J. M. C. Pereira, M. H. Kobayashi, J. C. F. Pereira, “A Fourth-Order-Accurate Finite Volume Compact Method for the Incompressible Navier-Stokes Solutions,” J. of Computational Physics, Vol. 167, 2001, pp. 217-243.
29. R. Tanaka, T. Nakamura, T. Yabe, “Constructing Exactly Conservative Scheme in a Non-Conservative Form,” J. of Computational Physics,Commun, Vol. 126, 2000, pp. 232-243.
30. T. Yabe, R. Tanaka, T. Nakamura, F. Xiao, “An Exactly Conservative Semi-Lagrangian Scheme (CIP-CSL) in One Dimension,” Mon. Wea. Rev., Vol. 129, 2001, pp. 332-344.
31. T. Nakamura, R. Tanaka, T. Yabe, K. Takizawa, “Exactly Conservative Semi-Lagrangian Scheme for Multi-Dimensional Hyperbolic Equations with Directional Splitting Technique,” J. of Computational Physics, Vol. 147, 2001, pp. 171-207.
32. S. K. Lele, “Compact Finite Difference Schemes with Spectral-Like Resolution,” J. of Computational Physics, Vol. 103, 1992, pp. 16-42.
33. Y. Imai, T. Aoki, “Accuracy Study of the IDO Scheme by Fourier Analysis,” J. of Computational Physics, Vol. 217, 2006, pp. 453-472.
34. Y. Imai, T. Aoki, “Stable Coupling Between Vector and Scalar Variables for the IDO Scheme on Collocated Grids,” J. of Computational Physics, Vol. 215, 2006, pp. 81-97.
35. Y. Imai, T. Aoki, K. Takizawa, “Conservative Form of Interpolated differential Operator Scheme for Compressible and Incompressible Fluid Dynamics,” J. of Computational Physics, Vol. 227, 2008, pp. 2263-2285.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top