|
1. G. K. Gupta, R. Sacks-Davis, and P. E. Tischer, A Review of Recent Developments in Solving ODEs, Computing Surveys, Vol. 17, No.1, March 1985 2. Instructor: Leon Kaganovskiy, Introduction to Numerical Methods, Chapter 8 - Ordinary Differential Equations, 8.4 Numerical Stability;Implicit Methods. 3. Elementary Numerical Analysis, 3rd Edition, Kendall Atkinson and Weimin Han, ISBN: 0-471-43337-3, Hardcover 576 pages. 4. E.Hairer, S.P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I, Berlin: Springer-Verlag, 1993. 5. Numerical Methods for Partial Differential Equations, CAAM 452, Spring 2005, Lecture 3, AB2,AB3, Stability, Accuracy, Instructor: Tim Warburton 6. Numerical Methods for Partial Differential Equations, CAAM 452, Spring 2005,Lecture 4, 1-step time-stepping methods: stability, accuracy, Runge-Kutta Methods, Instructor: Tim Warburton 7. ISBN: 9780030983306, Author: Patel, Vithal A, Publisher: Harcourt, Location: Ft. Worth : Subject: Mathematical Analysis, Subject: Applied, Subject: Numerical analysis, Copyright: 1994, Edition Description: Includes bibliographical references and index. Publication Date: November 1997, Binding: Trade Cloth, Language: English, Illustrations: Yes, Dimensions: 9.51x7.76x1.25 in. 2.75 lbs. 8. Shampine L. F. and Watts H. A. 1969. Block Implicit One-Step Methods. Math. Comput. 23, page 731-740 9. Bulatov M.V. Numerical solution of differential-algebraic equations by block methods // Computational Science - ICCS 2003, International Conference Melbourne, Australia and St. Petersburg, Russia, June 2-4, 2003, Proceedings, Part 2, pp. 516-522. 10. R.L. Burden and J.D.Faires, Numerical Analysis, Seventh Edition, Wadsworth Group. Brooks/Cole, (2001), 342-353. 11. H. A. Watts, L. F. Shampine , A-Stable Block one-step Methods, BIT, 12(1972), 252-266.
|