(3.235.236.13) 您好!臺灣時間:2021/05/15 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佳英
研究生(外文):Chia-Ying Lin
論文名稱:商品需求率隨存貨水準變動的退化性存貨模式之研究
論文名稱(外文):Research on the Deterioration Inventory Models for Items Demand Rate Varied by Inventory Levels
指導教授:李汶娟李汶娟引用關係
學位類別:碩士
校院名稱:長榮大學
系所名稱:國際企業研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:53
中文關鍵詞:部分缺貨待補線性退化率服務水準
外文關鍵詞:BackloggingLinear deteriorationService level
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在日常生活中,存貨的退化(deterioration)是很普遍的現象,存貨可能因為需求耗用掉或是產品退化的現象而減少,因此在擬定這類物品的存貨策略時,除了需求因素外,產品退化所造成的存貨數量減少也必須加以探討。需求型態常被假設與時間有關,退化率也從一開始不被考量到後續學者常假設退化率與時間有關。另外,企業在發生缺貨時,只有部分的消費者願意等候缺貨待補,而另一部分的消費者可能不願等候而放棄購買或是轉向其他廠商購買。物品的需求率可分為固定與變動,在現實的日常生活中可以觀察到一種現象,一些量販業者會儘量將貨架上的物品擺滿,藉此刺激顧客的需求。對於這類型的物品,其需求通常與貨架上的存貨數量有關。
最後本研究根據商品需求隨存貨水準變動且與時間有關,且退化率為與時間有關的線性函數,缺貨情形假設為部份缺貨待補,並加入服務水準的考量,在假設條件下以求得最適訂購次數以及最適的服務水準能使總成本最小。而且,也提出兩個數值範例來說明存貨模型的求解過程,並分別對各參數做敏感度分析,以提供管理者作為決策之參考。
In the real world, the deteriorating of goods is a very common phenomenon. The deteriorating items result in the decreasing of the products. Therefore, the loss due to deterioration cannot be neglected.
Some customers would like to wait for backlogging during the shortage period, but the other would not. In fact, the longer the waiting time is, the smaller the backlogging rate would be.
The assumption of constant demand is not always applicable to real situations. For instance, it is usually observed in the supermarket that display of the consumer goods in large quantities attracts more customers and generates higher demand.
Hence, in this paper, we derive the EOQ model for inventory of items that deteriorate rate at a Rayleigh function, assuming the demand rate varied by inventory levels. The optimal solutions of replenishment number and service level are then determined. Numerical examples and sensitivity analyses are also provided to illustrate the solution procedure.
Key words:Backlogging、Linear deterioration、Service level
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究流程 4
第二章 文獻探討 6
第一節 退化性存貨模式的基本概念 6
第二節 影響退化性存貨模式之因素 8
第三節 相關文獻比較 12
第三章 模式建立 14
第一節 研究架構 14
第二節 基本假設與符號說明 14
第三節 模式推導 17
第四章 數值範例及敏感度分析 26
第五章 結論與未來研究建議 36
第一節 研究結論 36
第二節 未來研究建議 38
參考文獻 40
池福灶(民91)。物料管理:理論、實務與現代化。台北縣:前程。

林豐智、黃聯海(民96)。現代作業管理第三版。台北市:麥格羅希爾。

許總欣、楊長林、莊尚平(民97)。作業管理精要。台北市:新陸。

張清溪、許嘉棟、劉鶯釧、吳聰敏(民84)。經濟學:理論與實際第三版。台北市:翰蘆。

梁添富(民89)。物料管理。台北市:育友。

黃惠民、謝志光(民89)。物料管理與供應鏈導論。台中市:滄海。

喬懷恩、蘇玲慧、黃惠民(民96)。考量時間限制與不良品之缺貨EOQ模式。先進工程學刊,第二卷第一期,頁21-26。

羅幼如(民88)。商品需求可替代下競爭廠商最適存貨決策之研究。國立彰化師範大學商業教育學系碩士論文。

Abad, P. L. (2000). Optimal lot size for perishable good under conditions of finite production and partial backordering and lost sale. Computers & Industrial Engineering, 38(4), pp. 457-465.

Bhunia, A. K. & Maiti, M. (1997). Deterministic inventory models for variable production. Journal of the Operational Research Society, 48(2), pp. 221-224.

Chakrabarty, T., Giri, B. C., & Chaudhuri, K. S. (1998). An EOQ model for items with weibull distribution deterioration, shortages and trended demand:An extension of Philip''s model. Computers & Operations Research, 25(7), pp. 649-657

Chang, H. J. & Dye, C. Y. (1999). An EOQ model for deteriorating items with time varying demand partial backlogging. Journal of the Operational Research Society, 50(11), pp. 1176-1182.

Chase, R. B., Jacobs, F. R., & Aquilano,N. J. (2006). Operations management for competitive advantage with global cases. McGraw-Hill, New York.

Covert, R. P. & Philip, G. C. (1973). An EOQ model with Weibull distribution deterioration. AIIE Transactions, 5(4), pp. 323-326

Cohen, M. A. (1977). Joint pricing and ordering policy for exponentially decaying inventory with known demand. Naval Research Logistic Quarterly, 24, pp. 257-268.

Dye, C. Y., Chang, H. J., & Teng, J. T. (2006). A deteriorating inventory model with time-varying demand and shortage-dependent partial backlogging. European Journal of Operational Research, 172(2), pp. 417-429

Deng, P. S., Lin, R. H. J. & Chu, P. (2007). A note on the inventory models for deteriorating items with ramp type demand rate. European Journal of Operational Research, 178(1), pp. 112-120.

Ghare, P. M. & Schrader, G. H. (1963). A model for exponentially decaying inventory. International Journal of Industrial Engineering, 14, pp. 238-243.

Giri, B. C., Goswami, A., & Chaudhuri, K. S., (1996). An EOQ model for deteriorating items with time varying demand and costs. Journal of the Operational Research Society, 47(11), pp. 1398-1405.

Harris, F. W. (1913). How many parts to make at once. Production Engineer, 10(2), pp. 135-136.

Kreyszig, E. (1999). Advanced Engineering Mathematics 8th ed. John Wiley & Sons, Inc., New York.

Levin, R. I., Mclaughlin, C. P., Lamone, R. P., & Kothas, J. F. (1972). Production/Operations Management:Contemporary Policy for Managing Operating Systems. McGraw-Hill, New York.

Lin, C., Tan, B., & Lee, W. C. (2000). An EOQ model for deteriorating items with time-varying demand and shortages. International Journal of Systems Science, 31(3), pp. 391-400.

Mandal, B. & Pal, A. K. (1998). Order level inventory system with ramp type demand rate for deteriorating items. Journal of Interdisciplinary Mathematics, 1, pp. 49-66.

Misra, R. B. (1975). Optimum production lot size model for a system with deteriorating inventory. International Journal of Production Research, 13(5), pp. 495-505.

Padmanabhan, G. & Vrat, P. (1995). EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, 86 (2), pp. 281-292.

Papachristos, S. & Skouri, K. (2000). An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type-backlogging. Operations Research Letters, 27 (4), pp. 175-184.

Papachristos, S. & Skouri, K. (2003). An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging. International Journal of the Production Economics, 83(3), pp. 247-256.

Philip, G. C. (1974). A generalized EOQ model for items with Weibull distribution. AIIE Transactions, 6(2), pp. 159-162.

Shah, Y. K. (1977). An order-level lot-size inventory model for deteriorating items. AIIE Transactions, 9(1), pp. 108-112.

Tadikamalla, P. R. (1976). An EOQ inventory model for items with Gamma distribution. AIIE Transactions, 10(1), pp. 100-103.

Teng, J. T., Ouyang, L. Y., & Chen, L. H. (2007). A comparison between two pricing and lot-sizing models with partial backlogging and deteriorated items. International Journal of the Production Economics, 105(1), pp. 190-203.

Wee, H. M. (1995). A deterministic lot-size inventory model for deteriorating items with shortage and a declining market. Computers and Operations Research, 22(3), pp. 345-356.

Wu, K. S. (2002). EOQ inventory model for items with Weibull distribution deterioration, time-varying demand and partial backlogging. International Journal of Systems Science, 33(5), pp. 323-329.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top