1.陳根德。蛀牙保健。景岳生物科技。2006。摘自:http://www.genmont.com.tw/html/cn/knowledge/07.htm. Accessed March 15, 2008.
2.Liang HF, Chen CN, Chang Y, Sung HW. Natural antimicrobial agent (reuterin) produced by Lactobacillus reuteri for sanitization of biological tissues inoculated with Pseudomonas aeruginosa. Biotechnol Bioeng. 2003;84(2):233-239.
3.Choi HJ, Cheigh CI, Kim SB, et al. Weissella kimchii sp. nov., a novel
lactic acid bacterium from kimchi. Int J Syst Evol Microbiol. 2002;52(2):507-511.
4. 劉廷英。乳酸菌專輯。財團法人食品工業發展研究所。1999。
5.Vuyst LD, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev. 1999;23:153-177.
6.Harp E, Gilliland SE. Evaluation of a select strain of Lactobacillus delbrueckii subsp. lactis as a biological control agent for pathogens on fresh-cut vegetables stored at 7 degrees C. J Food Prot . 2003;66(6):1013-1018.
7.蔡英傑。乳酸菌與益生菌。生物產業。1998;9:98-104。8. Williams and Wilkins. Bergey’s Manual of Systematic Bacteriology.
Baltimore. 1986.
9. 程孝維。產細菌素乳酸菌的分離、篩選及細菌素純化條件之研
究。嘉南藥理科技大學生物科技系碩士論文。2005。
10. 廖啟成。乳酸菌之分類及應用。乳酸菌專輯。財團法人食品工業發展研究所。1997。11. 楊媛絢。原生保健性菌種(probiotics)與益菌助生質(prebiotics) 之應用 ,乳酸菌專輯。財團法人食品工業發展研究所。1997。
12. 蔡英傑。乳酸菌對胃腸道的益處。台灣乳酸菌協會。2008。摘自: http://www.talab.org.tw/knowledge.htm. Accessed March 18, 2008.
13. Chiu CH, Lu TY, Tseng YY, Pen TM. The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high-cholesterol diet. Appl Microbiol Biotechnol. 2006;71(2):238-245.
14. 邱雪惠。乳酸菌之抗癌機制。食品工業。2004;36:27-33。15. Blaise CH, Rex G, Annick M. Cross-Talk between Probiotic Bacteria and the Host Immune System. J Nutr. 2007;137: 781-790.
16. Arthur C. Antiallergic effects of probiotics. J Nutr. 2007;137: 794- 797.
17. Nonaka Y, Izumo T, Izumi F, et al. Antiallergic effects of Lactobacillus pentosus strain S-PT84 mediated by modulation of Th1/Th2 immunobalance and induction of IL-10 production. Int Arch Allergy Immunol. 2008;145(3):249-257.
18. Ercolani GL. Bacteriological quality assessment of fresh marketed lettuce and fennel. Appl Environ Microbiol. 1976;31(6):847-852.
19. Cutter CN, Siragusa GR. Efficacy of organic acids against Escherichia coli O157:H7 attached beef carcass tissue using a pilot scale model carcass washer. J Food Prot. 1994;57:97-103.
20. Presser KA, Ratkowsky DA, Ross T. Modeling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl Environ Microbiol. 1997;63:2355-2360.
21. Dixon NM, Kell DB. The inhibition by CO2 of the growth and metabolism of microorganism. J Appl Bacteriol. 1989;67:164-167.
22. Barefoot SF, Nettles CG. Antibiosis revisited : bacteriocins produced by dairy starter cultures . J Dairy Sci. 2006;76:2366-2379.
23. Garcia GC, Masschalck B, Michiels CW. Inactivation of Escherichia coli in milk by high-hydrostatic-pressure treatment in combination with antimicrobial peptides. J Food Prot. 1999;62(11):1248-1254.
24. Shin K, Hayasawa H, Lonnerdal B. Inhibition of Escherichia coli respiratory enzymes by the lactoperoxidase-hydrogen peroxide-thiocyanate antimicrobial system. J Appl Microbiol. 2001;90(4):489-493.
25. Axelsson LT, Chung TC, Dobrogosz WJ, et al. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb Ecol Health Dis. 1989; 2:131-136.
26. El-Ziney MG, Vanden TT, Debevere J, et al. Application of reuterin produced by Lactobacillus reuteri 12002 for meat decontamination and preservation. J Food Prot. 1999;62(3):257-261.
27. Huttunen E, Noro K, Yang ZN. Purification and identification of antimicrobial substances produced by two Lactobacillus casei strains. Int Dairy J. 1995; 5: 503-513.
28. Hoefnagel MHN, Starrenburg MJC, Martens DE, et al. Mteabolic engineering of lactic acid bacteria, the combined approach: Kinetic modeling, metabolic control and experimental analysis. Microbiology. 2002;148:1003-1013.
29. Motlagh AM, Johnson MC, Ray B. Viability loss of food-borne pathogens by starter culture metabolites. J Food Prot. 1991;54(1):873-878.
30. Sarantinopoulos P, Leroy F, Leontopoulo E, et al. Bacteriocin production by Enterococcus faecium FAIR-E 198 in view of its application as adjuncy starter in Greek Feta cheese making. Int J Food Microbiol. 2002;72(1-2):125-136.
31. Piddock LJV. Techniques used for the determination of antimicrobial
resistance and sensitivity in bacteria. J Appl Bacterol. 1990;68: 307-318.
32. Gaidenko TA, Ya KM. Cloning of Bacillus licheniformis genes which control the biosynthesis of bacteriocin. Mol Gene Microbiol. 1988;1: 24-28.
33. Yudina TG, Egorovns N, Loriya ZHK, Vyboxnykh SN. Biological activity of Bacillus thuringiensis parasporal crystal. Izv Akad Nauk USSR Ser Biol. 1988;0:427-436.
34. Bennik MHJ, Verheul A, Abee T, et al. Interaction of Nisin and Pediocin PA-1 with closely related lactic acid bacteria that Manifest over 100-fold differences in bacteriocin sensitivity. Appl Environ Microbiol.1997;63:3628-3636.
35. Tagg JR, Dajanii AS, Wannamaker LW. Bacteriocins of Gram-positive bacteria. Bacteriol Rev. 1976;40:722-756.
36. Kelstrup J, Gibbons RJ, Bacteriocins from human and rodent streptococci. Arch Oral Biol. 1969;14:251-258.
37. Sudirman I, Mathieu F, Benoit V, et al. Properties of two bacteriocins synthesized by Leuconstoc strains. Curr Microbiol. 1994;28:155-159.
38. Buchman GW, Banerjee S, Hansen JN. Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibioctic. J Biol Chem. 1988;263:16260-16266.
39. Daeschel MA. Antimicorbial substances from lictic acid bacteria for
use as food preservatives. Food Technol.1989;43:164-167.
40. Nettles CG, Barefoot SF. Biochemical and genetic characteristics og bacteriocins of food associated lactic acid bacteria. J Food Prot. 1993;56:3338-356.
41. Tramer J, Fowler GG. Estimation of nisin in food. J Sci Food Agric. 1964;15:522-528.
42. Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: Safe, natural antimicrobials for food preservation. Int J Food Microbiol. 2001;71:1-20.
43. Barefoot SF, Klaenhammer TR. Detection and activity of Lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol. 1983;45:1808-1815.
44. Abee T, Klaenhammer TR, Letellier L, Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that froms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol. 1994;60(3):1006-1013.
45. Twomey D, Ross RP, Ryan M, et al. Lantibiotics produced by lactic acid bacteria: Structure, function and applications. Antonie van Leeuwenhoek. 2002;82(1-4):165-185.
46. Hansen JN, Banerjee S, Buchman GW. Potential of small ribosomally synthesized bacteriocins in design of new food preservatives. J Food Saf. 1989;10:119-130.
47. Bhunia AK, Johnson MC, Ray B. Purification, characterization andantimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol. 1988;65:261-268.
48. Davis DB, Dulbecco R, Eisen NH, Ginsberg SH. Microbiology 4th(ed). 1990.
49. Abee T, Krockel L, Hill C. Bacteriocins: modes of action and potentials in food prevervation and control of food poisoning. Int J Food Microbiol.1995; 28:169-185.
50. Orberg PK, Sandine WE. Microscale method for rapid isolaction of covalently closed circular plasmid DNA form group N streptococci. Appl Environ Microbiol. 1984;47:677-680.
51. Nissen MJ, Holo H, Havarstein LS, et al. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol. 1992;174:5686-5692.
52. Lewus CB, Sun S, Montville TJ. Production of an amylase-sensitive
1bacteriocin by an typical Leuconostoc paramesenteroides strain. Appl. Environ Microbiol. 1992;58:143-149.
53. De VL, Vandamme EJ. Antimicrobial potential of lactic acid bacteria. In bacteriocin of lactic acid bacteria :Microbiology genetics and applications. Chapman and Hall:London UK, pp91-142.
54. Stoffels G, Nissen MJ, Gudmendsdottir A, Sletten K, Holo H, Nes IF. Purification and characterization of a new bacteriocin isolated from a Carnobacterium spp. Appl Environ Microbial.1992;58:1417-1422.
55. Jack RW, Wan J, Gordon J, et al. Characterization of the chemical and antimicrobial properties of piscicolin 126,a bacteriocin produced by Carnobacterium piscicola JG126. Appl Environ Microbial.1996;62:2897-2903.
56. Ennahar S, Aoude WD, Sorokine O. Production of pediocin AcH by Lactobacillus plantarum WHE 92 isolated from cheese. Appl Environ Microbiol.1996;62(12):4381-4387.
57. Venema K, Chikindas ML, Seegers J, Haandrikman AJ, Leenhouts KJ, Venema G, Kok J.Rapid and Efficient Purification Method for Small, Hydrophobic, Cationic Bacteriocins: Purification of Lactococcin B and Pediocin PA-1. Appl Environ Microbiol.1997;63(1):305-309.
58. Kabuki T, Saito T, Kawai Y, Uemura J, Itoh T.Production, purification and characterization of reutericin 6, a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6. Int J Food Microbiol. 1997 ;34(2):145-156.
59. Contreras BG, De Vuyst L, Devreese B, et al. Isolation, purification, and amino acid sequence of lactobin A, one of the two bacteriocins produced by Lactobacillus amylovorus LMG P-13139. Appl Environ Microbiol. 1997;63(1):13-20.
60. Upreti GC, Hinsdill RD.Production and mode of action of lactocin 27: bacteriocin from a homofermentative Lactobacillus. Antimicrob Agents Chemother. 1975 ;7(2):139-45.
61. Bhunia AK, Johnson MC, Ray R, Kalchayanand N. Mode of action of pidiocin AcH from pidiococcus acidilactici H on sensitive bacterial strains. J Appl Bacterial .1991;70:25-33.
62. Gonzalez CF, Kunka BS. Plasmid-Associated Bacteriocin Production and Sucrose Fermentation in Pediococcus acidilactici. Appl Environ Microbiol. 1987;53(10):2534-2538.
63. Yang R, Johnson MC, Ray B. Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl Environ Microbiol. 1992; 58: 3355-3359.
64. Daba H, Pandian S, Gosselin JF, et al . Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl Environ Microbiol. 1991;57:3450-3455.
65. Hechard Y, Deijard B, Letellier F, Cenatiempo Y. Characterization purification of mesentericin Y 105, an anti-Listeria bacteriocin form Leuconostoc mesenteroides. J Gen Microbiol. 1992;138: 2725-2731.
66. Bakri IM, Douglas CW. Inhibitory effect of garlic extract on oral bacteria. Arch Oral Biol. 2005;50(7):645-651.
67. Clarke JR. On the bacterial factor in the aetiology of dental caries. Br J Exp Pathol .1924;5:141-147.
68. Hamada S, Slade HD. Biology immunology and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980;44:331-384.
69. Lodge J, Jacobson GR. Starvation-induced stimulation of sugar uptake in Streptococcus mutans is due to an effect on the activities of preexisting proteins of the phosphotransferase system. Infect Immun. 1988;56:2594-600.
70. Takahashi N, Abbe K, Takahashi SA, Yamada T. Oxygen sensitivity of sugar metabolism and interconversion of pyruvate formate-lyase in intact cells of Streptococcus mutans and Streptococcus sanguis. Infect Immun 1987;55:652-656.
71. Gold OG, Jordan HV, Houte JV. A selective medium for Streptococcus mutans. Arch Oral Biol . 1973;18:1357-1364.
72. Bratthall D. Immunodiffusion studies on the serological specificity of
streptococci resembling Streptococcus mutans. Odontol Revy. 1969; 20:231-43.
73. Loesche WJ. Role of Streptococcus mutans in human dental decay, 1986 vol. 50.
74. Michael AT, Christine LE, Douglas CY. Molecular phylogenetic evidence for noninvasive zoonotic transmission of Staphylococcus intermedius from a canine pet to a human. J Of Clinical Microbiol. 2000;0:1628-1631.
75. Buchnan RL, Hawitter LA. Effectiveness of Carnobacterium piscicola LK5 for controling the growth of Listeria monocytogenes Scott A in refrigeration foods. J Food Safety. 1992;12: 219-236.
76. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin-phenol reagent. J Biol Chem. 1951;193: 265-275.
77. Ita PS, Hutkins RW. Intracellular pH and survival of Listeria monocytognes Scott A in tryptic soy broth containing acetic, lactic, citric, and hydrochloric acids. J Food Prot. 1991;54(1):15-19.
78. Messens W, De VL. Inhibitory substances produced by lactobacilli isolated from sourdoughs-a review. Int J Food Microbiol. 2002;72(1-2):31-43.
79. Lin CM, Moon SS, Doyle MP, McWatters KH. Inactivation of Escherichia coli O157:H7, Salmonella enterica serotype enteritidis, and Listeria monocytogenes on lettuce by hydrogen peroxide and lactic acid and by hydrogen peroxide with mild heat. J Food Prot. 2002;65(8):1215-20.
80. 江靜雯。Lactobacillus acidophilus LC1 細菌素之生產及其在牛乳保鮮上之應用。國立海洋大學碩士論文。2000。81. Parente E, Ricciard A, Moles M. Leucocin F10, a bacteriocin from Leuconostoc carnosum. Int J Microbiol. 1996;33 (2-3): 231-243.
82. Van Laack RLJM, Schillinger U, Holzapfel WH. Characterization andpartial purification of a bacteriocin produced by Leuconostoc carnosum LA44A. Int J Food Microbiol. 1992:16: 183-195.
83. Garver KI, Muriana PM. Purification and partial amino acid sequence ofCurvaticin FS47, a heat-stable bacteriocin produced by Lactobacillus curvatus FS47. Appl Environ Microbiol. 1994;60: 2191-2195.
84. Klaenhammer TR. Genetic of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993;12: 39-87.
85. Bradford MM. A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem.1976;72:248-254.
86. Todorov SD, Nyati H, Meincken M et al. Partial characterization of bacteriocin AMA-K, produced by Lactobacillus plantarum AMA-K isolated from naturally fermented milk from Zimbabwe. Food Control. 2007;18:656-664.
87. Shan B , Cai YZ, John DB, Harold C. Antibacterial properties of Polygonum cuspidatum roots and their major bioactive constituents.
88. Gary AD, Ryszard A, Ronald BP. Enhancement of nisin antibacterial activity by a bearberry (Arctostaphylos uva-ursi) leaf extract. Food Microbiology. 2003; 20(2):211-216.Food Chemistry. 2008;109(3):530-537.